eHealth interventions for reducing cardiovascular disease risk in men: a systematic review and meta-analysis

James McMahon^a, David R Thompson^a, Michaela C Pascoe^b, Kevin Brazil^a, & Chantal F Ski^{a,c}

^a School of Nursing and Midwifery, Queen's University Belfast, Belfast, UK ^b Institute for Health & Sport, Victoria University, Melbourne, Australia ^c Integrated Care Academy, University of Suffolk, Ipswich, UK

Introduction

- Men remain at a higher risk of developing cardiovascular disease (CVD) than women¹
- Behavioural risk factor modification is an important preventive measure^{2,3}

Author	Int(r	ı) Con(n) MD	Lower C	I Upper CI		Study weight
Crane et al. 2015	48	49	-4.10	-8.75	0.55		- 10
George et al. 2013	25	22	-0.15	-1.72	1.42		19
Morgan et al. 2009	28	27	-0.80	-3.34	1.74		16
Morgan et al. 2011	54	36	-5.90	-7.57	-4.23	an a	19
Morgan et al.							

Analysis

Meta-analysis was undertaken using Comprehensive Meta-Analysis Version 3. A random-effects model was used in all analyses, with publication bias assessed using a forest plot and study quality assessed using the Cochrane risk of bias tool

- Engaging men in behaviour change interventions is challenging
- Although men often indicate a preference for genderspecific information and support, this rarely occurs⁴⁻⁶.
- eHealth interventions show potential to address this gap^{7,8}, though their effectiveness for reducing CVD risk in men is unclear.

Aim of review

The aim of this systematic review and meta-analysis was to evaluate the effectiveness of eHealth interventions for reducing CVD risk in men.

Methods

Figure 2. Forest plot – effect of online intervention vs control for waist circumference (cm)

Author	Int(i	n) Con(n) MD	Lower (CI Upp	er CI						į				Study	weight		
George et al. 2013	25	22	-3.00	-8.87	2.8	7					-					16			
Morgan et al. 2009	28	27	-2.00	-8.09	4.0	9					_					14			
Morgan et al. 2011	54	36	-5.70	-10.76	5 -0.E	54						_ !				21			
Morgan et al. 2013	43	45	-4.90	-9.11	-0.6	9		. <u></u>				_				30			
Tanaka et al. 2010	23	26	-3.10	-11.30) 5.1(0					8				_	8			
Veverka et al. 2003	20	19	-5.00	-12.01	L 2.0:	1										11			
Online intervention vs control			-4.22	-6.54	-1.9)1				٥									
					-14	-12	-10	-8	-6	-4	-2	0	2	4	6	. 8	10	12	

Results were reported as the mean difference, along with the confidence interval, z-value, p-value and I² statistic¹². For those outcomes not included in the meta-analysis, a narrative synthesis was provided.

Results

A total of 3168 records were retrieved through the database search with nine trials included in this review following the screening process.

Compared to those in a control group or receiving printed materials, participants randomised to an eHealth intervention had statistically significant improvements in BMI (Z=-2.75, p=0.01), body weight (Z=-3.25, p=0.01), waist circumference (Z=

This review was conducted in accordance with the PRISMA statement and principles laid out by the Cochrane Handbook for Systematic Reviews.

Search strategy

A systematic search was conducted across five electronic databases using Cochrane (CENTRAL), Medline, CINAHL Plus, PsycINFO and SCOPUS. Relevant reference lists were manually searched for additional trials.

Eligibility criteria

- Randomised controlled trials (RCTs)
- eHealth as main intervention component
- Assessed a minimum of two CVD related risk factors
- Males aged 18 or older

Study selection and data extraction

Figure 3. Forest plot – effect of online intervention vs control for systolic blood pressure (mmHg)

2.30, p=0.02) and systolic (Z=-3.57, p=0.01) and

diastolic (Z=-3.56, p=0.01) blood pressure.

Though less evident, there were also improvements

in physical activity and diet in favour of the

intervention group.

Discussion

- Findings of this review highlight the potential effectiveness of eHealth interventions for reducing a range of CVD risk factors in men
- Higher attrition rates were observed in those trials utilising an 'active control', providing participants with resources related to the online intervention
- Poor participant adherence rates were observed with the online intervention and warrants being addressed in future record

- 1. Titles and abstracts were screened independently by three reviewers
- 2. Remaining studies then underwent full text screening by two reviewers
- 3. Data extraction was conducted independently by two reviewers using a pre-designed data extraction form. The following data were extracted: country undertaken, aims, setting, participant and intervention characteristics, study methodology, and outcomes. Means (M), standard deviations (SD) and sample sizes (n) were also extracted.

	*	(1 - 52)	in rulure research
	Studies included in review $(n = 9)$	Reasons for exclusion: - Not men only participants	 Interventions based
nded		- Only targeting 1 risk factor	seemingly produced
Ind		 Not an RCT design Abstract only Written in non- 	related outcomes, y
		English language	influenced these ou

Figure 1. PRSIMA flow diagram

on a theoretical framework

I greater improvements in CVD et the extinct to which they

itcomes is difficult to ascertain

References

- 1. Virani et al., 2020. Heart disease and stroke statistics 2020 update: a report from the American Heart Association. Circulation, 141, e139-e596.
- Turco et al., 2018. Cardiovascular health promotion: an issue that can no longer wait. J Am Coll Cardiol, 72, 908-13.
- 3. WHO, 2017. Cardiovascular diseases (CVDs).
- Drew et al., 2020. Impact of male-only lifestyle interventions on men's mental health: a systematic review and meta-analysis. Obes Rev, 21, e13014.
- 5. Gavarkovs et al., 2016. Engaging men in chronic disease prevention and management programs: a scoping review. Am J Men's Health, 10, N145-N54.
- 6. Young et al., 2012. Effectiveness of male-only weight loss and weight loss maintenance interventions: a systematic review with meta-analysis. Obes Rev, 13, 393-408.
- 7. De Vries & Brug., 1999. Computer-tailored interventions motivating people to adopt health promoting behaviours: introduction to a new approach. Patient Educ Couns, 36, 99-105.
- Muellmann et al., 2016. Effectiveness of eHealth interventions for the promotion of physical activity in older adults: a systematic review protocol. Syst Rev, 5, 47.