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Abstract

This paper considers a multivariate system of fractionally integrated time series and in-
vestigates the most appropriate way for estimating Impulse Response (IR) coefficients and
their associated confidence intervals. The paper extends the univariate analysis recently
provided by Baillie and Kapetanios (2013), and uses a semi parametric, time domain es-
timator, based on a vector autoregression (V AR) approximation. Results are also derived
for the orthogonalized estimated IRs which are generally more practically relevant. Simu-
lation evidence strongly indicates the desirability of applying the Kilian small sample bias
correction, which is found to improve the coverage accuracy of confidence intervals for IRs.
The most appropriate order of the V AR turns out to be relevant for the lag length of the
IR being estimated.

1 Introduction

The analysis of individual Impulse Responses (IRs), and the complete Impulse Response Func-

tion (IRF ), have long been recognized as an important device for interpreting a time series

model, or dynamic econometric model. Sims (1980) wrote a seminal article on the practical

importance and interpretation of these methods in a Vector Autoregression (V AR) context.

However, the variability and derivation of confidence intervals for this approach was first de-

rived for weakly stationary, or stable processes by Schmidt (1973, 1977). In particular, Schmidt

developed techniques for matrix differentiation that allowed the derivation of the asymptotic dis-

tribution of estimated IRs from a covariance stationary dynamic simultaneous equation model.
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This work led to the derivation of asymptotic distributions of estimated IRs from covariance sta-

tionary Vector Autoregressive (V AR) models in articles by Baillie (1987) and Lütkepohl (1988,

1989). While these theoretical results are quite elegant, they essentially rely on a linearized

Taylor series expansion of the estimated IRs around the true parameter values. These articles

and indeed the current study, deal with pointwise inference on IR coefficients, as opposed to

the analysis of a vector of IRs, or the IRF function. Some analysis of the latter problem for

covariance stationary V ARs is to be found in Inoue and Kilian (2013).

This paper focuses on the problem of inference for estimating IRs and their confidence inter-

vals for a multivariate fractionally integrated process. These models have been used in several

areas of financial economics and empirical macroeconomics; see for example, Sowell (1992) and

Jensen (2009). Some of the necessary technical machinery builds on the methodology for the

univariate case developed by Baillie and Kapetanios (2013), which uses a semi parametric, time

domain estimator, based on an autoregressive (AR) approximation and finds that it has good

theoretical and small sample properties for the estimation of the IRs. Baillie and Kapetanios

(2013) also recommend using a generic semi parametric sieve bootstrap, based on an autore-

gressive approximation for the construction of confidence intervals for the estimated IRs. In

this context, is important to note the preceding work of Inoue and Kilian (2002a), Inoue and

Kilian (2002b) and Goncalves and Kilian (2007) who focus on impulse response analysis for short

memory processes.

This paper develops the methodology for the multivariate situation and shows that a valid

method for conducting inference on IRs for fractionally integrated processes can be based on

estimating an approximating V AR. As a result, it is important to note that our work allows for

data generating processes that have not been covered previously in the literature. The validity

of this approach is proven under quite mild assumptions. The findings in this paper also indicate

that a good strategy for analyzing IRs is to estimate a semi parametric V AR, and to then use a

sieve bootstrap for estimating confidence intervals. Simulation evidence indicates this approach

appears to be a very good strategy for both short and long memory processes. For the purpose

of estimating IRs and their associated confidence intervals, the various difficulties related with

the identification and specification of multivariate ARMA models alluded to by Tsay (1989),

Kapetanios, Pagan and Scott (2007) and Poskitt (2011), do not arise. It should also be noted

that some forms of nonlinearity can be mistaken for long memory, or very persistent processes.

The sieve V AR approach advocated in this paper could be used in such a situation and has the

advantage of not relying on the parametric specification of a complicated “structural” nonlinear

model.

One of the major findings of this paper is that the semi parametric sieve bootstrap, based on

a V AR approximation, appears to have a remarkably good coverage rate for the construction of

confidence intervals of estimated IRs for a wide range of data generating processes, including

both weakly stationary and fractionally integrated processes.

The plan of the rest of this paper is as follows; Section 2 reviews some basic theory and
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assumptions, while Section 3 discusses the standard approach of deriving the asymptotic distri-

bution for the estimated IRs and the problems with the theory in the presence of fractionally

integrated processes. Section 4 then derives the basic ideas behind the Sieve V AR Bootstrap

and the theory behind its validity. Section 5 describes some detailed simulation evidence on

the performance of the V AR for estimation of IRs and the Sieve V AR for the derivation of

confidence intervals of the estimated IRs. Section 6 provides an empirical application of our

new methodology to the long run Fisher effect; and Section 7 provides some conclusions.

2 Basic Theory

This paper considers the vector time series process where yt is defined as an m dimensional

multivariate stochastic process of the form

yt =
∞∑
j=0

Ψjεt−j,

where εt is an unobserved, vector white noise process, such that E (εt) = 0, E
(
εtε

/
t

)
= Ω

which is an m dimensional, positive semi definite, covariance matrix and E
(
εtε

/
s

)
= 0 for t 6= s.

The sequence of IRs or Wold Decomposition matrices are defined such that Ψ0 = I, and Ψj

is a sequence of m × m matrices of constants. On defining Ψ(L) =
∑∞

j=0 ΨjL
j, the square

summability condition

∞∑
j=0

ΨjΩΨ
/
j <∞

is assumed to be satisfied. For subsequent analysis, the following assumptions are invoked:

Assumption 1 εt is an m dimensional ergodic martingale difference sequence, so that E(εt|εt−1, εt−2, ...) =

0, and E(εtε
/
t |εt−1, εt−2, ...) = Ω and its third and fourth moments matrices are finite constants.

Assumption 2 Ψ(L) = D(L)−1Ψ̃(L), where D(L) is a diagonal matrix with typical diagonal

element given by (1 − L)di and di is the long memory parameter for the i-th equation and

−0.5 < di < 0.5 for i = 1, 2, ..m. Also, Ψ̃(L) =
∑∞

j=0 Ψ̃jL
j and

∑∞
j=0 j

1/2
∥∥∥Ψ̃j

∥∥∥ <∞, where ‖.‖
denotes the Euclidean matrix norm. Furthermore, Φ(z) ≡ Ψ(L)−1 =

∑∞
j=0 Φjz

j exists for all

|z| ≤ 1 .

For subsequent use of the bootstrap, Assumption 1 has to be replaced by the condition that

εt is i.i.d. The above framework is essentially restricted to one of linearity with corresponding

constraints on the error process. The above class of processes is quite wide and includes many

processes considered in the literature. Clearly, the leading univariate case is the basic ARFIMA

model of Granger (1980), Granger and Joyeux (1980) and Hosking (1981). The multivariate

version of this model is the MVARFIMA(p, d, q) which is given by

Π(L)D(L) (yt − µ) = Θ(L)εt
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where Ψ̃(L) = Π(L)−1Θ(L), Π(L) =
∑p

j=0 ΠjL
j,Θ(L) =

∑q
j=0 ΘjL

j and µ is a vector of

constants. Details of the population aspects of this multivariate model are to be found in Sowell

(1986, 1992) and Chung (2002). Note that the standard assumption, in empirical work, is that

the process is weakly stationary with exponentially decaying IRs with Ψj = O (Cj) where C is

a matrix of constants with eigenvalues that are bounded from above by one in absolute value.

Rather than invoking this standard assumption, this paper considers the case where there is

strong persistence due to fractional integration in the IRs, so that the ‖Ψj‖ = O
(
jd−1

)
for

0 ≤ d < 0.5 as in Chung (2002). This implies that
∥∥∥∑∞j=0 ΨjΨ

′
j

∥∥∥ <∞.

In many practical applications of V ARs and of IR analysis, there can be an issue of identifi-

cation and the desire to obtain the orthogonalized IRs, which are standardized in the sense that

the covariance matrix of the innovations are equal to the identity matrix rather than Ω. Hence

an investigator may wish to provide estimates of
{
ΨjΩ

−1/2
}h
j=1

rather than {Ψj}hj=1. Since

Ω1/2 is not unique, then for a given Ω, it is necessary to provide further identifying assumptions;

for example see Inoue and Kilian (2013) and chapter 4 of Canova (2007) for a discussion. Details

of inference from orthogonalized IRs are provided in Sections 4 and 5 of this paper.

3 Asymptotic Distribution of Estimated IRs

One standard parametric approach has been to specify a stationary and invertible MVARFIMA

model such that Π(L) and Θ(L), and therefore, Ψ(L) are parameterized so that they are

functions of a vector of parameters given by θ. In particular, for the MVARFIMA model with

D(L)yt = ut and

Π(L)ut = Θ(L)εt−jmathbfεt

the system can be expressed as the Markovian, or companion form representation of Ut =

CUt−1 + vt where U
/
t = [yt,yt−1, ...yt−r+1, εt, εt−1, ...εt−r+1]. The lag order r = max(p, q), while

v
/
t = [εt,0, εt,0], and with null matrices of the appropriate dimension. Then,

C =


Π1Π2...Πr−1 Πr Θ1Θ2...Θr−1 Θr

I 0 0 0
0 0 0 0
0 0 I 0


Then θ/ =[d1, ...dm, vec(N

/C), vech(Ω)] and N/ = [I,0] , which is of dimension m by 2mr.Then

on estimation of the structural parameters θ by either approximate or full MLE,
√
T
(
θ̂ − θ0

)
L→ N(0,V). (1)

Note that θ0 denotes the true value of θ, and the symbol
L→ denotes convergence in distribution1.

The theory for full and approximate MLE of multivariate ARFIMA models is described by

1For ease of exposition, µ is assumed to either be the null vector, or known; so that the MVARFIMA model
is expressed in deviation form. The MLE of µ coverges at a slower rate than T 1/2 and hence the full MLE
of the system requires different normalizations for the estimated µ parameters. The properties of the other
parameter estimates remain unchanged.
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Sowell (1986, 1992) and Chung (2002)2. Some applications of the methodology are given in

Diebold, Husted and Rush (1991) for the univariate case, while articles by Sowell (1992), Baillie

and Chung (2002) and Jensen (2009) describe applications in the multivariate case.

In order to obtain confidence intervals for the estimated vectorized IR matrix at lag j, i.e.

vec(Ψj,θ̂), where the subscript θ̂ denotes dependence of Ψj on θ̂, a traditional method has been

to use the delta method, which is based on a linearized Taylor Series expansion around the

true vectorized IRs at lag j, vec(Ψj,θ0). On further assuming that εt is an i.i.d. sequence, that∑∞
j=1 supθ |Ψj,θ| <∞ and that V defined above is nonsingular, then for all j = 1, ..., h

√
T
(
vec(Ψj,θ̂)− vec(Ψj,θ0)

)
L→ N(0,D′jVDj) (2)

where Dj =
∂vec(Ψj,θ)

∂θ

∣∣∣
θ=θ0

. For stationary and invertible V ARMA models, there are parametric

expressions available for the matrix Dj; see Baillie (1987). However, no corresponding results

are yet available for the MVARFIMA model.

Analogous analysis can be conducted for orthogonalized IRs which are based on the quanti-

ties Ψ̂jΩ̂
−1/2, where Ω̂ = T−1

∑
t ε̂tε̂

′
t, and Ω̂1/2 denotes some suitably defined square root of Ω̂.

Then,

√
T
(
vec(Ψj,θ̂Ω̂θ̂

−1/2
)− vec(Ψj,θ0Ω

−1/2
θ )

)
L→ N(0,G′jVGj) (3)

where Gj =
∂vec(Ψj,θΩ

−1/2
θ )

∂θ

∣∣∣∣
θ=θ0

. It is important to note that high persistence can be a problem

with the above traditional methodology, or ”delta method”. In particular, issues arise in the

presence of very persistent processes, such as long memory processes and also near unit root

processes; see Wright (2000), Kilian (1998, 1999) and Pesavento and Rossi (2007). This motivates

the need for investigation of alternative approaches, as in Baillie and Kapetanios (2013) for

univariate fractionally integrated processes.

4 Sieve VAR Bootstrap

Given the results in Baillie and Kapetanios (2013) for the univariate fractionally integrated

process, the estimation and inference approach taken in this paper is to extend the sieve AR

approximations with bootstrapped confidence intervals in the univariate case to a multivariate

setting. Hence, this paper considers approximating a multivariate fractionally integrated process

with a V AR(∞) representation which exists under Assumption 2 by means of a V AR(pT ) model

where the lag order, pT , is allowed to tend to infinity with the sample size. In particular

yt =

pT∑
j=1

Φ
(pT )
j yt−j + υt

2These results have been explored in more detail for the univariate case by Baillie and Kapetanios (2013),
who use results of Hosoya (1997) which do not necessarily require the innovations to be i.i.d.. The extension to
vector long memory processes has not been attempted.
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where
∑pT

j=1 Φ
(pT )
j yt−j is the linear projection of yt on yt−1, ...,yt−pT . The OLS estimates of

Φ
(pT )
j are obtained by fitting a V AR(pT ) model to the data and are denoted by Φ̂

(pT )

j . The esti-

mated IRs are then obtained by inverting the truncated V AR. It follows from a straightforward

extension of Theorem 5 of Poskitt (2007) that

pT∑
j=1

∥∥∥Φ̂(pT )
j −Φ

(pT )
j

∥∥∥2

= op(1)

for all sequences {pT} such that pT →∞ and pT = o(Tα) for all α > 0. An acceptable sequence

for pT is pT = bln(T )αc where α > 1 and b.c denotes the integer part. Also, from an extension

of Baxter’s inequality proven by Inoue and Kasahara (2006),

pT∑
j=1

∥∥∥Φ(pT )
j −Φj

∥∥∥ = o(1)

as long as pT → ∞. The selection of pT can be through a data dependent method such as

an information criterion like the AIC,3 or by some deterministic rule such as pT = bln(T )αc,
where a > 0. Then, the IR analysis proceeds by inverting the autoregressive polynomial with

coefficient matrices Φ̂
(pT )
j , j = 1, ..., pT to give estimated IRs of the form Ψ̂

(pT )
j . Inference on

Ψ̂
(pT )
j can be carried out by means of the bootstrap. The sieve bootstrap, as usually applied in

the literature; e.g. Inoue and Kilian (2002b), and as analyzed in the univariate long memory case

by Baillie and Kapetanios (2013), can also be implemented in this study. For ease of reference,

the relevant algorithm is given below:

1. Estimate a V AR(pT ) model on yt and obtain the estimated coefficients, Φ̂
(pT )
j , j = 1, ..., pT

and the residuals, ε̂t = yt −
∑min(pT ,t−1)

j=1 Φ̂
(pT )
j yt−j .

2. Invert the autoregressive polynomial with coefficient matrices Φ̂
(pT )
j , j = 1, ..., pT to obtain

the Ψ̂
(pT )
j , for j = 1, ..., h. In some applications it is desirable to orthogonalize the IRs,

which are defined as Ψ̂
(pT )
j Ω̂−1/2, where Ω̂ = 1

T

∑
t ε̂tε̂

′
t, and Ω̂1/2 denotes some suitably

defined square root of Ω̂.

3. Re-center (ε̂1, ..., ε̂T )′.

4. Re-sample with replacement from this vector to obtain the bootstrap sample of error terms

given by (ε∗1, ..., ε
∗
T )′.

3The use of information criterion necessitates the specification of lower and upper bounds for the possible
value of pT . Usually for the short memory case the lower bound pmin = pmin,T is specified to diverge with T while
the upper bound is of the form pmax,T = Tαand α < 1/2. Of course pmin,T < pmax,T . For the long memory case
a different upper bound is needed. This is because consistency of the parameter estimates cannot be obtained
for all d < 1/2 when pmax,T = Tα for any α > 0, and a lower rate is needed. Therefore, it is usually assumed
that pmax,T = bln(T )αc, where α > 0. More details may be found in Poskitt (2007).

6



5. Use the above error terms together with Φ̂
(pT )
j , j = 1, ..., pT , to generate the bootstrap

sample (y∗1, ...,y
∗
T )′ with initial values set to zeros.

6. Estimate a V AR(pT ) for (y∗1, ...,y
∗
T )′ to obtain the bootstrap estimated autoregressive

coefficients given Φ̂
(pT )
j for j = 1, ..., pT .

7. Invert Φ̂∗,(pT )(z) =
∑pT

j=1 Φ̂∗,(pT )zj to obtain bootstrap estimates of the impulse responses

given by Ψ̂
∗,(pT )
j , j = 1, ..., h. Similarly, bootstrap estimates of orthogonalized impulse

responses are derived from Ψ̂
∗,(pT )
j Ω̂−1/2.

8. Repeat the above algorithm B times and then use the resulting estimates of the IR to

construct an empirical distribution of the IR.

The properties of the sieve estimator discussed in this section, as well as those of the sieve

bootstrap, are summarized in the following Theorem, which together with corollary 1 of Inoue

and Kilian (2002a) imply the validity of the sieve bootstrap for IR analysis. The proof of the

Theorem is in the appendix.

Theorem 1 Let Assumptions 1 and 2 hold and set pT = o ((lnT )a) for some a > 0. Then,

pT∑
j=1

∥∥∥Φ̂(pT )
j −Φj

∥∥∥2

= op(1). (4)

Further, for all j = 1, ...,

d(P
Ψ̂

(pT )
j

, P
Ψ̂

∗,(pT )
j

) = op(1) (5)

where PY denotes the probability law of a random matrix Y , and d(PY 1 , PY 2) is the Mallows

metric between PY 1 and PY 2. Then,

d(PΩ̂∗ , PΩ̂) = op(1). (6)

5 Simulations

This section investigates the properties of the sieve V AR bootstrap procedure compared with

various other schemes. In order to have a meaningful comparison, the data generating process

is a MVARFIMA(1, d, 0) which can have substantial persistence given the choice of the long

memory parameter, d and with m = 2 dimensions. The data generating process is given by

D(L)yt = ut

ut = Φut−1 + εt,

(I−ΦL) =

(
1− βL 0
−0.5L −0.5L

)
7



and

εt
iid∼ N

((
0

0

)
,

(
1 0.3

0.3 1

))
,

where D(L) is an m dimensional square diagonal matrix and is constrained for convenience

in the simulation study to have the same long memory parameter across equations so that

D(L) = (1− L)dIm, where Im is an m dimensional identity matrix. A critical feature of the

different simulation designs concerns the persistence of the short memory V AR(1) components.

This paper adopts the same design as used by Kilian (1998), where (I−ΦL) is constructed so

that β determines the degree of short memory persistence, since the eigenvalues of Φ are 0.5

and β, where β ∈ {0.5, 0.9} . In all the experiments d was chosen as 0.44. The sample size

is T ∈ {250, 500} and the number of Monte Carlo replications is 500. For each realization,

1, 000 bootstrap simulations to obtain the first order mean bias ”Kilian corrected, (”bootstrap-

after-bootstrap”) version of the parameter estimates are used, as in Kilian (1998); and 2, 000

bootstrap simulations are used for investigating the properties of the estimated IRs. Note that

the Kilian bias correction is obtained using a double bootstrap as discussed on page 220 of

Kilian (1998). Finally, and as previously noted, it can be desirable to use either orthogonalized

or non orthogonalized IRs. The orthogonalized IRs are derived from imposing a recursive

causal structure, from the first to the last variable, and is consistent with the standard Cholesky

decomposition method.

Given the various theoretical methods and issues discussed earlier, three different V AR

estimation approaches were implemented in the simulations. The application of the V ARs

essentially vary in the way the maximum lag length is selected. The methods are:

(i) V AR represents the case where the sieve V AR(pT ) bootstrap has been applied with

pT = bc ln(T )2c, and with the constant c allowed to take the values 0.25, 0.50, 0.75 and 1.00. For

example, for the sample sizes of T = 250 and 500 and for c = 1, the lag length, pT is 30 and 39

respectively. However, the results for the c = 0.75 case are suppressed from this version of the

paper since they turned out to be extremely similar to those for c = 1; but are available from

the authors on request. Similarly, the results for c = 0.5 are only presented for one design.

(ii) V AR−K denotes the sieve V AR(pT ) bootstrap, pT = bc ln(T )2c, using the Kilian (1998)

correction for bias. The same values for c are used.

(iii) AIC − K involves the sieve V AR bootstrap, where p is chosen by the AIC, and also

the bias correction method of Kilian (1998) is implemented. The maximum order for the AIC

is set as pT = bln(T )2 + 20c.
All the results for the coverage rates are calculated at the 90% level. The first set of results

presented in Figures 1 through 4 report results for the design with the less persistent short

4Simulation work was also completed for the case of d = 0.2, but the results do not add significant extra
information and are not reported for reasons of conserving space. These results are available from the authors
on request.
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memory case of β = 0.5, for the sample size of T = 250. Each figure is divided into four panels.

Starting with the top left corner and continuing in a clockwise direction, the first panel depicts

the coverage rates for the IRs of y1 to y1, then y1 to y2, then y2 to y2 and finally y2 to y1.

The first two figures present both orthogonalized and non-orthogonalized IRs. As expected,

the latter perform better since they do not require estimates of the Ω matrix. This pattern is

consistent for all other cases considered in the simulation experiment. Since non-orthogonalized

IRs are far less relevant for applied work, it was decided not to report these results after the

first two figures for each DGP . This increases the clarity of the graphical exposition in the

remaining figures.

Tables 1 and 2 report the coverage rates when estimating IRs at lags h = 2, 4, 8, 12 and

h = 16. One of the most interesting aspects of these tables is the substantial increase in coverage

provided from using the Kilian bias correction method compared to the regular sieve bootstrap

V AR. The two tables also indicate the extra degree of difficulty introduced by estimating the

orthogonalized, rather than non orthogonalized IRs and the relative importance of the Kilian

bias correction in both cases.

It can generally be seen that the use of pT = bc ln(T )2c, is extremely sensitive to the choice

of c. In Figure 1 with c = 0.25, the coverage is quite good for low order lags Ψh for h < 10,

but very poor for higher order lags of the IRs for h ≥ 10. For higher values of c, beginning

with c = 0.50 in Figure 2, the performance is seen to be radically improved for the higher order

lags beyond h > 10, but conversely very poor for the low order lags of h < 10. This pattern is

almost identical to the case where c = 1.00 in Figure 3. As previously mentioned the situation

for c = 0.75 is extremely similar to the c = 1.00 case and is therefore not reported. Figure 4,

summarizes results for the same design, only with the lag length determined by the AIC. These

coverage rates are extremely poor and appear to be due to excessively high lag values for the

V AR being chosen by the AIC method. The general poor performance of the AIC turned out

to be typical for all the designs being considered and hence are not reported in the remaining

figures in order to conserve space.

Figures 5 and 6 present corresponding information to Figures 1 through 4, only for the larger

sample size of T = 500 and with c = 0.25 and c = 1.00 respectively. Figures 7 through 8 are

analogous to the Figures 5 through 6 and differ only in terms of the short memory parameter

β being fixed at the higher level of persistence of β = 0.9 and with a sample size of T = 250.

Finally, Figures 9 and 10 are for the cases of higher level of short memory persistence with

β = 0.9 and with the higher sample size of T = 500 and for c = 0.25 and c = 1.00 respectively

The conclusions are generally the same as for the initial tables 1 through 4.

The following broad conclusions can be reached on the basis of the simulation results:

(a) The orthogonalized estimated IRs perform considerably worse than the corresponding

non-orthogonalized IRs. The intuition behind this is quite clear since the latter also use the

estimate of the covariance matrix of the error term. This is a very important conclusion, since

it demonstrates that the extension from univariate to multivariate IRs is not a trivial one
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in practice and hence many of the results obtained by Baillie and Kapetanios (2013) for the

univariate case need to be re-examined for the multivariate case.

(b) The bias correction method is extremely useful and very substantially improves the

performance of both the estimated orthogonalized and the non-orthogonalized IRs estimators.

As previously noted, tables 1 and 2 present the coverage rates at lags 1, 2, 4, 8, 12, 16 and 20, for

the sample sizes of 250 and 500 respectively.

(c) Superior estimates of the IRs at short horizons can be obtained from using V ARs with

fewer lags. Whereas the opposite seems to be the case for long horizons of the IRs being better

estimated with high order V ARs. The corollary is that a sensible approach is to make the lag

order of the V AR depend on the horizon of the IRs one desires to estimate. A reasonable

horizon cut-off point appears to be around 10 periods ahead. Given these results, such a mixed

V AR approach was used for the IR analysis and the results are given in Figures 11 and 12 for

the sample size of 250. Figure 11 reports results for using two different order V ARs; with the

lag order chosen on the basis for c = 0.25 when estimating IRs up to lag 10 and then from

using a V AR with lags chosen on the basis of c = 0.5 for estimating IRs for lags 11 through 25.

Figure 12 presents results for when the V AR has a lag order equal h+ 1 for estimating IRs up

to lag h = 1, ...10; and on the basis of c = 0.5 is chosen for longer horizons. These both choices

appear to be feasible ways of conducting IR analysis and achieve good results.

(d) The persistence of the short memory process, as defined by β, does not seem to affect

the performance of any of the methods, or any of the above three conclusions.

(e) As expected, the performance of all the methods improves with increasing sample size.

(f) AIC seems to choose too high a value for p, the lag length of the V AR, for small sample

size; and too low a value of p for larger sample sizes. Consequently it does well at long horizons

in smaller samples and vice versa for longer samples. An interesting feature of AIC is that it

performs much better on the non-orthogonalized IRs, which are of rather less economic interest

than the orthogonalized version. In general it does not appear to be a very good method to use

in this context.

6 Application to Long Run Fisher equation

An interesting application of the above methodology concerns the relationship between inflation

and nominal interest rates and the log run Fisher equation. In a recent article, Jensen (2009),

has considered the reasons that previous literature has failed to find support for the long run

Fisher effect; and attributes that to the inappropriate assumption that inflation may be a unit

root process. Jensen assumes that both inflation and nominal interest rates are described by a

fractionally integrated, mean reverting, bivariate MVARFIMA model. Jensen (2009) argues

that since there is no evidence that inflation is a unit root process and since permanent changes

to inflation do not occur, then the issue on whether permanent changes to inflation affect the

long run nominal interest rate will be uninformative, as to the truth or otherwise of the long
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run Fisher hypothesis.

The following analysis uses the same data set as Jensen (2009) with the US and UK variables

being analysed using quarterly series published in the International Financial Series database.

The inflation rate is the usual definition of the differenced logarithm of each country’s consumer

price index; and the nominal interest rate is the annualized rate of return of the relevant Treasury

bill. The data is from 1957−Q1 through 2004−Q4 for the US and 1957−Q1 through 2004−Q3

for the UK. The V AR maximum lag length for the AIC was set as pT = b1.00 ln(T )2c . On

adopting the standard monetary policy rule assumption that inflation is causally prior to nominal

interest rates, the ordering of variables and the Cholesky decomposition is clear. For example

see Bernanke et al (2005) for discussion of this modeling approach. Following the conclusions of

the above simulation study, the lag length of the V AR was chosen on the basis of a lag order

equal h + 1 for estimating IRs up to lag h = 1, ...10; and subsequently on the basis of c = 0.5

for longer horizons. As expected the IRs for own shocks; i.e. the effect of inflationary shocks

on current levels of inflation, and the analogous effect of interest rate shocks on current interest

rates, are both positive and significant. Figures 13 and 14 indicate that interestingly, the UK has

a larger IR at short horizons for a CPI shock compared with an interest rate shock. Also, past

CPI innovations have a positive effect on interest rates. However, this effect is relatively small,

which possibly indicates that before the Volcker regime authorities did not really try seriously

to combat inflation.

Furthermore, past interest rate shocks appear to positively effect inflation. This is a common

finding in the literature and has been termed as the ‘price puzzle’. According to Castelnuovo and

Surico (2010), during periods of passive monetary policy, such as prior to the Volcker regime, a

price puzzle in the US is to be expected. More specifically, these authors find that a positive

response of prices to a monetary policy shock is historically limited to the sub-samples that are

typically associated with a weak interest rate response to inflation.

7 Conclusion

This paper considers a fractionally integrated system and investigates the most appropriate

method for estimating Impulse Responses and their associated confidence intervals. The paper

has extended the univariate analysis recently provided by Baillie and Kapetanios (2013), and

has used a semi parametric, time domain estimator, based on a vector autoregressive (V AR)

approximation. We find that a deterministic rule of choice of the V AR lag length based on

c ln(T )2 seems to perform reasonably well. Simulation evidence strongly indicates the desirability

for applying the Kilian (1998) small sample bias correction method, which improves both the

estimated orthogonalized and non-orthogonalized IRs.

One interesting finding is that superior estimates of the IRs for short horizons can be obtained

from using V ARs with fewer lags, while IRs at long horizons are better estimated with high

order V ARs. This method appears quite attractive and is used in an empirical example of the

11



inflation and interest rate relationship.

One of the major findings of this paper is that the semi parametric sieve bootstrap, based on

a V AR approximation, appears to have a remarkably good coverage rate for the construction of

confidence intervals of estimated IRs for a wide range of data generating processes, including

both weakly stationary and fractionally integrated processes.

8 Appendix

This Appendix provides a proof of Theorem 1 in this paper. For the validity of Equation (4)

in our Theorem 1, it is necessary to show that Theorem 1 of Poskitt (2007) extends to the

autocovariances of multivariate fractionally integrated processes. In particular it is required to

prove that

max
0≤τ≤pT

‖CT (τ)− Γ(τ)‖ = O

((
log T

T

)1/2−d
)

(7)

where Γ(τ) = E
(
yty

′
t+τ

)
and CT (τ) = 1

T

∑T
t=1 yty

′
t+τ . However, the proof of Theorem 1

of Poskitt (2007) proceeds in the multivariate case exactly as in the univariate case once it is

established that

E
(
‖CT (τ)− Γ(τ)‖2) = O

(
T 2d−1

)
. (8)

Hence it is necessary to prove the above result, which for the univariate case is provided by

Theorem 3 of Hosking (1996). The multivariate version of this result can be obtained by

considering Corollary 1 of Chung (2002). That corollary proves the convergence in distribution

of T 1/2−dvec(CT (τ)−Γ(τ)) to a random variable with finite variance. This immediately implies

(8). On using similar arguments to those in the proof of Theorems 4 and 5 of Poskitt (2007),

(8), implies the following

pT∑
j=1

∥∥∥Φ̂(pT )
j −Φ

(pT )
j

∥∥∥ = o(1) (9)

It is further required to show that

pT∑
j=1

∥∥∥Φ(pT )
j −Φj

∥∥∥ = o(1) (10)

as long as pT → ∞. However, Theorem 4.1 of Inoue and Kasahara (2006) can be extended to

this case, with some tedious but relatively straightforward algebra. This then proves equation

(4).

Next, for Equation (5) it is necessary to extend Theorem 6 of Baillie and Kapetanios (2013)

to multivariate processes. However, this extension is immediate once Theorem 1 of Poskitt

(2007) is extended to autocovariances of multivariate processes, which was shown above.
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Finally, to prove equation (6), it is sufficient to show the results of Theorem 1 of Inoue and

Kilian (2002a) are valid for Ω. First, it is necessary to show that the second block of equation

(A.4) in Inoue and Kilian (2002a) converges to the normal distribution, which is sufficient for

proving the above result. This proof is facilitated by obtaining versions of (A.1) through (A.3)

in Inoue and Kilian (2002a). It is important to note that deriving (A.4) requires only that

(A.1) through (A.3) hold with the right hand side being replaced by op(1). This is first done by

reviewing the results of Paparoditis (1996). To achieve this it is necessary to prove

‖CT (τ)− Γ(τ)‖ = op(1) (11)

pT∑
j=1

∥∥∥Φ̂(pT )
j −Φj

∥∥∥ = op(1) (12)

pT∑
j=1

∥∥∥Ψ̂(pT )
j −Ψj

∥∥∥ = op(1) (13)

‖Γ∗(τ)− Γ(τ)‖ = op(1) (14)

∥∥Γ∗−1(τ)− Γ−1(τ)
∥∥ = op(1) (15)

where Γ∗(τ) is the bootstrap analog of Γ(τ). Equations (11) and (12) have been shown above;

while Equation (12) together with Theorem 2.2 of Paparoditis (1996) gives Equation (13). Sim-

ilarly, Theorem 2.5 of Paparoditis (1996) and Equations (11) through (13) can be used to prove

Equations (14) and (15). On using Equations (11) through (15) gives (A.4) of Inoue and Kilian

(2002a). The rest of the steps of the proof of Theorem 1 of Inoue and Kilian (2002a) follow

straightforwardly. In particular, Inoue and Kilian (2002a) use Theorem 24.3 of Davidson (1994)

to prove that

(T − k)1/2 vech
(

Ω̂∗ − Ω∗
)

d→ N(0, V )

where Ω∗ and Ω̂∗ are the bootstrap analogs of Ω and Ω̂ , while V is a positive definite covariance

matrix, and
d→ denotes convergence in distribution. Then Equation (A.6) of Inoue and Kilian

(2002a) which shows that Ω̂∗−Ω∗ is made up of terms that follow a martingale difference, is self

contained and does not change between the short and long memory cases. The rest of the steps

using Theorems 2.3 and 2.4 of Paparoditis (1996) again follow from Equation (12). Only the rate

of convergence in Theorem 2.3 of Paparoditis (1996) changes. However, this is inconsequential

since only convergence in probability is used in the relevant steps of the proof of Theorem 1 of

Inoue and Kilian (2002a), and not any of the rates of convergence in the second half of page 325,

and first half of page 326 of Inoue and Kilian (2002a).
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Simulation Results: Tables

Table 1: Orthogonalized Estimated Impulse Responses from Design with β = 0.5 and T = 250.
Effective coverage rates for 90% confidence intervals derived from different order VARs.

Ψ̂11 Ψ̂12

p̂ h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20 h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20
SB SB

2 0.86 0.78 0.70 0.62 0.48 0.35 0.23 0.85 0.85 0.85 0.83 0.75 0.66 0.55
4 0.72 0.76 0.77 0.73 0.59 0.47 0.38 0.86 0.86 0.85 0.85 0.82 0.77 0.66
8 0.54 0.63 0.71 0.68 0.69 0.59 0.49 0.84 0.85 0.86 0.84 0.87 0.86 0.76

12 0.36 0.52 0.63 0.67 0.70 0.68 0.61 0.83 0.84 0.86 0.86 0.84 0.87 0.87
16 0.17 0.39 0.56 0.67 0.71 0.70 0.69 0.82 0.84 0.85 0.85 0.87 0.88 0.88

KB KB
2 0.88 0.86 0.83 0.82 0.73 0.66 0.56 0.87 0.87 0.86 0.87 0.85 0.82 0.76
4 0.80 0.85 0.88 0.83 0.83 0.78 0.72 0.89 0.87 0.87 0.84 0.85 0.85 0.84
8 0.64 0.74 0.85 0.85 0.86 0.84 0.82 0.85 0.88 0.87 0.89 0.90 0.90 0.88

12 0.46 0.69 0.80 0.87 0.87 0.88 0.88 0.84 0.86 0.89 0.91 0.89 0.93 0.92
16 0.27 0.56 0.76 0.87 0.91 0.91 0.90 0.85 0.88 0.88 0.90 0.92 0.92 0.91

Ψ̂21 Ψ̂22

p̂ h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20 h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20
SB SB

2 0.88 0.74 0.83 0.86 0.80 0.63 0.48 0.79 0.81 0.80 0.62 0.44 0.27 0.16
4 0.87 0.87 0.80 0.84 0.77 0.62 0.50 0.73 0.78 0.75 0.66 0.49 0.34 0.25
8 0.83 0.79 0.79 0.77 0.76 0.68 0.60 0.54 0.63 0.68 0.68 0.65 0.50 0.40

12 0.71 0.69 0.74 0.78 0.79 0.76 0.68 0.36 0.52 0.60 0.66 0.65 0.61 0.51
16 0.61 0.61 0.66 0.71 0.75 0.78 0.79 0.19 0.36 0.54 0.61 0.66 0.64 0.63

KB KB
2 0.88 0.76 0.87 0.85 0.87 0.84 0.77 0.85 0.87 0.86 0.80 0.71 0.63 0.50
4 0.87 0.89 0.87 0.91 0.89 0.86 0.82 0.84 0.87 0.88 0.85 0.79 0.74 0.64
8 0.82 0.83 0.86 0.88 0.89 0.89 0.85 0.69 0.79 0.86 0.89 0.87 0.83 0.80

12 0.70 0.72 0.82 0.89 0.89 0.89 0.90 0.48 0.72 0.83 0.88 0.87 0.86 0.86
16 0.62 0.66 0.77 0.84 0.87 0.90 0.92 0.29 0.58 0.78 0.86 0.89 0.91 0.91

Key: SB denotes the coverage rates obtained from a standard Sieve VAR bootstrap. KB denotes the coverage rates obtained from a Sieve VAR

bootstrap using Kilian (1998) bias correction. Ψ̂11 stands for the response of variable 1 to a shock in variable 1. Ψ̂12 stands for the response of variable

1 to a shock in variable 2. Ψ̂21 stands for the response of variable 2 to a shock in variable 1. Ψ̂22 stands for the response of variable 2 to a shock in

variable 2. Results from 500 Monte Carlo replications. Kilian (1998) corrected parameter estimates are obtained using 1,000 bootstrap resamples. The

IRs are obtained using 2,000 bootstrap resamples.

17



Table 2: Non - Orthogonalized Estimated Impulse Responses from Design with β = 0.5 and
T = 250. Effective coverage rates for 90% confidence intervals derived from different order
VARs.

Ψ̂11 Ψ̂12

p̂ h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20 h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20
SB SB

2 0.88 0.83 0.78 0.62 0.47 0.33 0.23 0.86 0.88 0.91 0.91 0.92 0.94 0.96
4 0.86 0.85 0.85 0.80 0.69 0.57 0.43 0.90 0.86 0.87 0.85 0.88 0.90 0.92
8 0.84 0.84 0.86 0.82 0.80 0.73 0.61 0.92 0.90 0.88 0.88 0.89 0.92 0.95

12 0.85 0.84 0.83 0.83 0.82 0.80 0.77 0.89 0.89 0.91 0.91 0.89 0.89 0.95
16 0.87 0.85 0.85 0.84 0.86 0.85 0.83 0.91 0.87 0.90 0.90 0.90 0.91 0.91

KB KB
2 0.86 0.86 0.83 0.82 0.72 0.60 0.52 0.85 0.88 0.90 0.90 0.91 0.91 0.92
4 0.88 0.91 0.88 0.87 0.84 0.79 0.74 0.89 0.87 0.88 0.85 0.86 0.87 0.88
8 0.87 0.89 0.89 0.89 0.89 0.88 0.85 0.92 0.90 0.89 0.88 0.91 0.91 0.92

12 0.88 0.87 0.90 0.90 0.89 0.89 0.91 0.88 0.89 0.91 0.91 0.90 0.91 0.92
16 0.90 0.89 0.89 0.92 0.92 0.94 0.93 0.92 0.89 0.91 0.92 0.92 0.93 0.93

Ψ̂21 Ψ̂22

p̂ h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20 h = 1 h = 2 h = 4 h = 8 h = 12 h = 16 h = 20
SB SB

2 0.90 0.80 0.84 0.88 0.82 0.64 0.50 0.89 0.88 0.83 0.65 0.45 0.28 0.18
4 0.90 0.89 0.85 0.87 0.81 0.67 0.53 0.90 0.87 0.81 0.72 0.54 0.39 0.28
8 0.90 0.91 0.89 0.83 0.80 0.72 0.64 0.89 0.84 0.81 0.77 0.71 0.58 0.46

12 0.90 0.89 0.86 0.84 0.83 0.79 0.74 0.85 0.85 0.83 0.77 0.74 0.68 0.62
16 0.86 0.88 0.88 0.82 0.82 0.84 0.83 0.86 0.83 0.81 0.76 0.77 0.77 0.75

KB KB
2 0.91 0.80 0.87 0.83 0.86 0.85 0.78 0.88 0.88 0.85 0.81 0.73 0.64 0.52
4 0.90 0.89 0.90 0.91 0.89 0.87 0.84 0.92 0.90 0.90 0.86 0.79 0.75 0.67
8 0.90 0.92 0.91 0.90 0.89 0.90 0.87 0.91 0.91 0.92 0.90 0.89 0.86 0.82

12 0.90 0.89 0.89 0.91 0.91 0.89 0.90 0.88 0.90 0.92 0.91 0.88 0.86 0.89
16 0.87 0.88 0.91 0.89 0.90 0.91 0.92 0.89 0.87 0.90 0.89 0.91 0.91 0.92

Key: as for table 1.
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Simulation Results: Figures

Figure 1: Effective Coverage Rates from Design with β = 0.5, T = 250 and pT = b0.25 ln(T )2c =
8.
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Key to all Simulations Figures: The solid line represents the nominal coverage rate at the 90 % level in all cases. The line denoted by ”+”
represents the coverage rate of the orthogonalized IRs from a standard Sieve V AR bootstrap (SB Orth.). The line denoted by ”x” represents the
coverage rate of the orthogonalized IRs from a Sieve V AR bootstrap using the Kilian (1998) bias correction (KB Orth.). For Figures 1 and 2, the dotted
line represents the coverage rate of the non-orthogonalized IRs from a standard Sieve V AR bootstrap (SB Non-Orth.). The dashed line represents the

coverage rate of the non-orthogonalized IRs from a Sieve V AR bootstrap using the Kilian (1998) bias correction (KB Non-Orth.). The variable Ψ̂ij
denotes the response of variable i to a shock in variable j; for i, j = 1, 2. The results are from 500 Monte Carlo replications; while the Kilian (1998) bias
corrected parameter estimates are obtained from using 1, 000 bootstrap resamples. The IRs are obtained from using 2, 000 bootstrap resamples.
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Figure 2: Effective Coverage Rates from Design with β = 0.5, T = 250 and pT = b0.50 ln(T )2c =
15.
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Figure 3: Effective Coverage Rates from Design with β = 0.5, T = 250 and pT = b1.00 ln(T )2c =
30.
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Figure 4: Effective Coverage Rates from Design with β = 0.5, T = 250 and pT = AIC.
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Figure 5: Effective Coverage Rates from Design with β = 0.5, T = 500 and pT = b0.25 ln(T )2c =
10.
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Figure 6: Effective Coverage Rates from Design with β = 0.5, T = 500 and pT = b1.00 ln(T )2c =
39.
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Figure 7: Effective Coverage Rates from Design with β = 0.9, T = 250 and pT = b0.25 ln(T )2c =
8.

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ψ̂11

Horizon

C
o
ve

ra
g

e
 R

a
te

Nominal
SB Orth.
SB Non−Orth.
KB Orth.
KB Non−Orth.

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ψ̂12

Horizon

C
o
ve

ra
g

e
 R

a
te

Nominal
SB Orth.
SB Non−Orth.
KB Orth.
KB Non−Orth.

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ψ̂21

Horizon

C
o
ve

ra
g

e
 R

a
te

Nominal
SB Orth.
SB Non−Orth.
KB Orth.
KB Non−Orth.

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ψ̂22

Horizon

C
o
ve

ra
g

e
 R

a
te

Nominal
SB Orth.
SB Non−Orth.
KB Orth.
KB Non−Orth.

25



Figure 8: Effective Coverage Rates from Design with β = 0.9, T = 250 and pT = b1.00 ln(T )2c =
30.
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Figure 9: Effective Coverage Rates from Design with β = 0.9, T = 500 and pT = b0.25 ln(T )2c =
10.
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Figure 10: Effective Coverage Rates from Design with β = 0.9, T = 500 and pT = b1.00 ln(T )2c =
39.
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Figure 11: Effective Coverage Rates at 90% confidence intervals from Design with β = 0.5,
T = 250; with the Impulse Responses estimated from Hybrid VARs. For lags h = 1, 2, ..., 10 use
ph = b0.25 ln(T )2c = 8 and for lags h = 11, 12, ..., 25 use ph = b0.50 ln(T )2c = 15.
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Figure 12: Effective Coverage Rates at 90% confidence intervals from Design with β = 0.5,
T = 500; with the Impulse Responses estimated from Hybrid VARs. For lags h = 1, 2, ..., 10 use
ph = (h+ 1) and for lags h = 11, 12, ..., 25 use ph = b0.50 ln(T )2c = 15.
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Empirical Application: Figures

Figure 13: US
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Key to all Figures: The line with ”x” represents the orthogonalized IRs from a Sieve V AR bootstrap using Kilian (1998) bias correction (KB
Orth.) along with the 90% confidence bounds (dotted lines). The reported results are produced using different lag orders for short and long horizons:

pT,h={1,...,10} = h + 1, and pT,h={11,...,20} =
⌊
0.50 ln(T )2

⌋
= 14. Kilian (1998) corrected parameter estimates are obtained using 1, 000 bootstrap

resamples. The IRs are obtained using 2, 000 bootstrap resamples.
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Figure 14: UK
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