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1. Introduction

Since the seminal work of Engle and Granger (1987), we observe a continuous and pro-
li�c stream of publications on estimating and testing long-run relationships amongst non-
stationary economic variables. This literature can be divided into two branches: Single
equation and system approaches (for an relevant review of system equations cointegration
tests cf. Hubrich, Lütkepohl and Saikkonen, 2001).

This paper deals mainly with the former type and in this context, we start by proposing
a new single equation test for the null hypothesis of cointegration based on the sample auto-
covariance. Our test can be seen as an extension of the stationarity test proposed by Harris,
McCabe and Leybourne (2003, hereafter HML). Analogous tests for the null of cointegration
in the literature include Hansen (1992), Quintos and Phillips (1993), Shin (1994), Jansson
(2005) and Kurozumi and Arai (2008). Hansen (1992) derives tests for parameter instability
with I(1) processes. He shows that these tests can be viewed as tests of the null hypothesis
of cointegration against the alternative of no cointegration. Similarly, Quintos and Phillips
(1993) develop tests for parameter constancy in cointegrating regressions. Their approach
delivers a test of the null hypothesis of cointegration against particular directions of departure
from the null hypothesis. The test proposed by Shin (1994), which is a residual based test,
for testing the null hypothesis of cointegration against the alternative of no cointegration, is
based on the approach adopted by Kwiatkowski, Phillips, Schmidt, and Shin (1992). Jansson
(2005) o¤ers a feasible point optimal test of the null hypothesis of cointegration whose local
asymptotic power function is showed to be close to the limiting Gaussian power envelope.
Finally, a locally best invariant and unbiased (LBIU) test is proposed in Kurozumi and Arai
(2008), which also discuss the relative merits and demerits of the tests of Shin (1994), Jansson
(2005) and theirs.

In addition to single equation tests for cointegration, panel cointegration tests have been
developed in the literature since late 90�s. Early contributions are given by Kao (1999) and
Pedroni (1999, 2004) among others, in which individuals are assumed to be independent.
On the other hand, Banerjee, Marcellino and Osbat (2004) have shown through simulations
that panel cointegration tests have severely distorted size in presence of cross units cointe-
gration. In many empirical applications this is likely the case, because of economic links
across regions and units. Another source of size distorsion is the likely presence of cross-
sectional dependence. A succession of panel cointegration tests accounting for cross-sectional
dependence have been proposed by Marcellino and Osbat (2004), Gengenbach, Palm and
Urbain (2006), Westerlund (2008), Westerlund and Edgerton (2008), Hanck (2009), Chang
and Nguyen (2012), and Bai and Carrion-i-Silvestre (2013) among others. Most of these tests
assume the null hypothesis of no cointegration against the alternative of cointegration, while
Chang and Nguhen (2012) also consider the case where the null of hypothesis is such that
a part of individuals are not cointegrated. In addition to the theoretical development, panel
unit root/cointegration tests have been implemented in empirical analysis. For example, the
PPP hypothesis have been investigated by many papers, including Banerjee, Marcellino and
Osbat (2005), while Westerlund (2008) considers testing the Fisher e¤ect using panel cointe-
gration tests. See also Banerjee and Wagner (2009) for the theoretical overview and empirical
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examples.

Contrary to tests for the null of no panel cointegration, there are only a few papers about
tests for the null of the existence of panel cointegration. McCoskey and Kao (1999) propose
LBIU tests and Westerlund (2005) consider CUSUM-based panel cointegration tests, but they
assume cross-sectional independence. Westerlund and Edgerton (2007) implement the boot-
strap method to McCoskey and Kao�s (1999) test to correct for cross-sectional dependence.
All the above panel cointegration tests are residula-based tests. Few panel cointegration tests
adopted the Johansen methodology. These include Larsson, Lyhagen and Löthgren (2001),
Larsson and Lyhagen (2007) and Groen and Kleibergen (2003). The last two papers extended
Larsson, Lyhagen and Löthgren (2001) to allow for cross-sectional dependence. Choi (2013)
o¤ers a recent review of tests for panel cointegration. In this paper, we propose tests for
the null hypothesis of panel cointegration by using the same method as Harris, Leybourne
and McCabe (2005, hereafter HLM), which consider the null hypothesis of panel stationarity
by pooling individual autocovariances. Like HLM (2005), our test statistic has a negative
bias, which makes our test conservative. To avoid this problem, we propose an e¤ective bias
correction to improve the �nite sample properties of our test.

It is widely known that panel unit root/cointegration tests are more powerful than single
equation tests and Baltagi (2008) and Breitung and Pesaran (2008) provide comprehensive
surveys on the subject. On the other hand, this improved power comes, in general, at a
price in terms of a more involved asymptotic theory dealing with two indices simultaneously3

and the need to emend for likely occurrence of cross-sectional dependence. Instead of using
the joint asymptotics to obtain a test whose null limiting distribution is free of nuisance
parameters, we use a simpler asymptotic theory where N is �xed and T ! 1: This is due
to the fact that the limiting distribution of the statistic of each unit is a standard normal
distribution. Therefore, our panel cointegration tests are valid for any N:

The remainder of the paper has the following structure. In Section 2, we review the
autocovariance based test proposed by HLM (2003) and HLM (2005). The new univariate
cointegration test is analyzed in the following section. Section 4 investigates the novel panel
cointegration tests. The �nite sample property of our tests are investigated in Section 5.
Finally, Section 6 o¤ers some concluding remarks, and all proofs are collected in the Appendix.

2. Review of the Autocovariance Based Test

In this section, we brie�y review stationarity tests based on the autocovariance proposed
by Harris, McCabe and Leybourne (2003, hereafter HML) and Harris, Leybourne and McCabe
(2005, hereafter HLM). Let us consider the following local level model4:

yt = �+ zt for t = 1; 2; � � � ; T;
3Cf. Phillips and Moon (1999) for a theoretical exposition and Hadri, Larsson and Rao (2012) for a

discussion of the di¤erent limit theories including the limit theory where T is �xed and N is allowed to go to
in�nity.

4HML (2003) and HLM (2005) allowed for deterministic regressors in addition to a constant but we restrict
our attention to the local level model in order to simplify the explanation.
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and suppose that we want to test for the null hypothesis that zt is stationary whereas it is a
unit root process under the alternative. HML (2003) note the di¤erences in the convergence
order of the sample autocovariance under the null and the alternative hypotheses,

1

T �K

TX
t=K+1

ẑtẑt�K
p�! E[(yt � �)(yt�K � �K)] � CK under the null hypothesis

1

(T �K)2
TX

t=K+1

ẑtẑt�K
d�!

Z 1

0

~B2(r)dr under the alternative

for a given lag orderK, where ẑt = yt��y and ~B(r) is a demeaned Brownian motion. Although
it seems inconvenient to use the sample autocovariance as a test statistic because it converges
to a �xed value CK , HML (2003) notice that CK ! 0 as K !1 and thus the central limit
theorem (CLT) for the sample autocovariance with a suitable normalization is expected to
hold as K goes to in�nity. In fact, they showed that

1p
T�K

PT
t=K+1 ẑtẑt�K

!̂zz

d�! N(0; 1) under the null hypothesis; (1)

where !̂2zz is the kernel estimator of the long-run variance based on ẑtẑt�K , whereas the
left-hand side diverges to in�nity under the alternative. They also proposed a test for het-
eroskedastic cointegration using a similar principle.

The above stationarity test based on the autocovariance was extended to a panel station-
arity test by HLM (2005). For a panel data model given by

yit = �i + zit for i = 1; 2; � � � ; N and t = 1; 2; � � � ; T;

we have the regression residuals normalized by the standard deviation; that is,

~zi;t =
ẑi;t
�̂i;z

; where �̂i;z is the sample standard deviation of ẑi;t:

Then, the test statistic for panel stationarity is constructed by pooling the sample autoco-
variances across cross-sections, which is given by

ŜK =
~CK
!̂a

; where ~CK =
1p

T �K

TX
t=K+1

~aK;t with ~aK;t =
NX
i=1

~zi;t~zi;t�K

and !̂2a is the long-run variance estimator based on ~aK;t. HLM (2005) showed that ŜK
d�!

N(0; 1) under the null hypothesis whereas it diverges to in�nity under the alternative.

Although the size of the above test can be controlled at least asymptotically, HLM (2005)
showed that ŜK su¤ers from under-size distortion in �nite samples because of the negative
bias of the test statistic. Since ẑi;t = zi;t � �zi, we can see that

1p
T �K

TX
t=K+1

~zi;t~zi;t�K =
1

�̂2i;z
p
T �K

TX
t=K+1

zi;tzi;t�K�
1

�̂2i;z
p
T �K

 
1p
T

TX
t=1

zi;t

!2
+op

�
1p
T

�
;
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and thus the negative bias comes from the second term on the right-hand side of the above
equation. Note that this negative bias accumulates when we pool the sample autocovariances,
so that the panel stationarity test tends to be severely undersized as N gets larger. Because
the expectation of (T�1=2

PT
t=1 zi;t)

2 is approximated by the long-run variance of its limiting
distribution, HLM (2005) proposed the following bias corrected version of the test statistic:

~SK =
~CK +~b

!̂a
where ~b =

1p
T �K

NX
i=1

!̂2i;z

�̂2i;z

with !̂2i;z being the long-run variance estimator based on ẑi;t. Because the bias term is

negligible when T is large, we still have ~SK
d�! N(0; 1) under the null hypothesis.

3. Univariate Cointegration Test
3.1. Model and assumptions

We start with a univariate cointegrating regression model given by

yt = �0Xt + ut for t = 1; 2; � � � ; T; (2)

where Xt = [1; x0t]
0 (constant case) or Xt = [1; t; x0t]

0 (trend case), yt and xt are 1- and
px-dimensional processes with

xt = xt�1 + vt and ut = �ut�1 + u
�
t :

We make the following assumption for u�t and vt:

Assumption 1 (a) [u�t ; v
0
t]
0 is a vector linear process given by�

u�t
vt

�
=

1X
j=0

�j"t�j with
1X
j=0

j2k�jk <1;

where f"tg is an (px + 1)-dimensional i:i:d: sequence with mean 0 and variance given by �",
which is positive de�nite, and has the �nite fourth order moments.

(b) The spectral density of [u�t ; v
0
t]
0, denoted by f(�) � (2�)�1�(e�i�)�"�0(ei�), is nonsingular

and f(�) � �Ipx+1 for some � > 0 for all � 2 [0; �].

Assumption 1 implies that [u�t ; v
0
t]
0 is stationary and that there is no cointegrating relation

among xt. The 2-summability of f�jg is stronger than usual but we need this condition to
derive the bias later. The assumption on the spectral density will be used to derive the leads
and lags expression. We also note that, since f"tg is an i:i:d: sequence with the �nite fourth
order moments, exercise 2.13 of Brillinger (1981) implies that [u�t ; v

0
t]
0 satis�es Assumption

2.6.2 of Brillinger (1981). That is, the fourth order cumulants of [u�t ; v
0
t]
0, which are denoted

by �ijkl(m1;m2;m3), satisfyXXX1

m1;m2;m3=�1
j�ijkl(m1;m2;m3)j <1:
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The testing problem we consider is given by

H0 : j�j < 1 vs. H1 : � = 1:

That is, yt is cointegrated with xt under the null hypothesis whereas they are not cointegrated
under the alternative. Note that under the null hypothesis, [ut; v0t]

0 also satis�es the same
conditions as given by Assumption 1.

Since it is known that ~DT (�̂ols��) converges in distribution where �̂ols is obtained by re-
gressing yt on Xt and ~DT = diagf

p
T ; T Ipxg (constant case) or ~DT = diagf

p
T ; T

p
T ; T Ipxg

(trend case), we can see that the same weak convergence holds as given by (1) with ẑt replaced
by ût. However, such a test su¤ers from under-size distortion as discussed in the previous
section; therefore, we need to construct the bias corrected version of the test. In the case of
cointegration model (2), we have

1p
T �K

TX
t=K+1

ûtût�K =
1p

T �K

TX
t=K+1

utut�K

� 1p
T �K

TX
t=1

utX
0
t

 
TX
t=1

XtX
0
t

!�1 TX
t=1

Xtut + op

�
1p
T

�
;(3)

so that the second term in (3) corresponds to the bias term. Under Assumption 1 and the
null hypothesis, we can show that

~D�1
T

TX
t=1

XtX
0
t
~D�1
T

d�!
Z 1

0

~B(r) ~B0(r)dr and ~D�1
T

TX
t=1

Xtut
d�!
Z 1

0

~B(r)dBu(r) + �xu;

where ~B(r) = [1; B0(r)]0 (constant case) or ~B(r) = [1; r; B0(r)]0 (trend case) with B(r) being
a px-dimensional Brownian motion, Bu(r) is a 1-dimensional Brownian motion, and �xu is
the so called one-sided long run variance. As a result, the expectation of the bias term
approximately becomes

E

"�Z 1

0

~B(r)dBu(r) + �xu

�0�Z 1

0

~B(r)�1 ~B0(r)dr

��1�Z 1

0

~B(r)dBu(r) + �xu

�#
: (4)

In this case, the problem is that B(r) is correlated with Bu(r) in general, so that it is too
di¢ cult to evaluate the above expectation in general. Exception is the case when ut is
independent of vt, so that B(r) is independent of Bu(r) and �xu = 0. In such a special case,
(4) reduces to !2u(pc + px) where pc = 1 or 2 depending on constant or trend case while !2u
is the long-run variance of ut, which can be estimated using ût. In other words, if vt = �xt
is uncorrelated with the regression error ut for all the leads and lags, then we can evaluate
expectation (4).

In order to establish such a reasonable relation, we exploit the dynamic ordinary least
squares (DOLS) technique5 considered by Phillips and Loretan (1991), Saikkonen (1991) and

5We also considered the fully modi�ed (FM) regression proposed by Phillips and Hansen (1990). However,
it can be shown that the tedious bias still remains even if the FM method is applied and thus we do not pursue
the FM technique in this paper.
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Stock and Watson (1993). Under Assumption 1 and the null hypothesis, we have the following
leads and lags expression by Theorem 8.3.1 of Brillinger (1981):

ut =
1X

j=�1
�0jvt�j + �t; (5)

where E[vs�t] = 0 for all s and t, and the transfer function associated with f�jg is given
by fuv(�)f�1vv (�) with fuv(�) and fvv(�) being the corresponding blocks of f(�). Then, the
assumption of the 2-summability of f�jg implies that f�jg is also 2-summable. In addition,
because [ut; v0t]

0 is a linear process with i:i:d: innovations, �t can be expressed as

�t =
1X

j=�1
�j�t�j with

1X
j=�1

jjj2j�j j <1; (6)

where f�tg is an independent sequence with mean 0, variance �2� and the �nite fourth order
moments. By replacing ut in (2) with (5), we have

yt = �0Xt +
1X

j=�1
�0jvt�j + �t:

By truncating in�nite leads and lags at j = �M , we obtain the DOLS regression as follows:

yt = �0Xt +
MX

j=�M
�0jvt�j + �

�
t ; for t =M + 1; � � � ; T �M; (7)

where ��t = �t+
P
j>jM j �

0
jvt�j . Note that the truncation points can be di¤erent at the leads

and the lags; in fact, the �nite sample performance with the di¤erent truncation points could
be better in some cases as investigated by Hayakawa and Kurozumi (2008) and Choi and
Kurozumi (2012). In this paper, the same truncation points are used only for notational
convenience.

In the following, we consider constructing a test statistic based on regression (7) and thus
for notational convenience, we re-de�ne T = T � 2M and denote the e¤ective sample period
t =M + 1; � � � ; T �M as t = 1; � � � ; T .

As discussed in Saikkonen (1991), the truncation point M must diverge to in�nity at a
suitable rate and we make the following assumption on the divergence rate of M :

Assumption 2 As T !1,

M4

T
! 0; (8)

p
T
X
jjj>M

k�jk ! 0: (9)
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Conditions (8) and (9) gives the upper and lower bounds for the divergence rate of M ,
respectively. Note that Saikkonen (1991) assumed M3=T ! 0, which is weaker than (8) and
su¢ cient to guarantee the asymptotic normality of �j for a given j. The stronger assumption
2 is required in order to evaluate the bias term in our cointegration test. Note that, as shown
by Kejriwal and Perron (2008), we can relax Assumption 2 as far as the e¢ cient estimation
of � is concerned.

3.2. Cointegration test with DOLS regressions

We construct the test statistic following HML (2003). Let �̂�t be the regression residuals
from DOLS regression (7) and the standardized version6 is given by

~��t =
�̂�t
�̂�
; where �̂2� =

1

T

TX
t=1

�̂�2t :

Then, the test statistic for the null of cointegration is given by

ŜK =
~CK
!̂a

where ~CK =
1p

T �K

TX
t=K+1

~aK;t with ~aK;t = ~�
�
t ~�
�
t�K ;

and !̂2a is the long-run variance estimator of ~aK;t with the Bartlett kernel given by

!̂2a = 
̂a;0 + 2
JX
j=1

�
1� j

J + 1

�

̂a;j where 
̂a;j =

1

T �K

TX
t=K+j+1

~aK;t~aK;t�j (10)

and J is the bandwidth of order o(T 1=2).

We would like to show that the functional central limit theorem (FCLT) holds for ~CK , but
we cannot directly apply theorems in HML (2003) because they assume a causal linear process
for the stochastic term zt whereas �t in our model is not a causal but a linear process with
leads and lags of the innovations f�tg. Then, we �rst have to establish the Beveridge�Nelson
(B�N) decomposition for �t�t�K . In the following, the coe¢ cients and the lag polynomials
depend on K but we suppress it for notational convenience.

Lemma 1 For f�tg satisfying (6), we have

�t�t�K =
1X
j=1

Gj�t�t�j ��~rt ��+~r+t + r1;t + r2;t + r3;t; (11)

6Exactly speaking, it is not necessary for the residuals to be standardized as far as the univariate case is
concerned; the standardization is required only for the panel cointegration test in order for the test statistic
to be scale invariant. We standardize them in the univariate case just because the univariate cointegration
test can be seen as a special case of the panel cointegration test.
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where � = 1� L and �+ = 1� L�1 with L being the lag operator, Gj = G1;j +G2;j with

G1;j =
K�1X

`=1�(j^K)
�`�j+`�K and G2;j =

8><>:
K�j�1X
`=1

�`�K�j+`; (j = 1; � � � ;K � 2);

0; (j > K + 2);

~rt = ~r1;t + ~r2;t with

~r1;t =
1X
j=1

~G1;j(L)�t�t�j where ~G1;j(L) =
K�2X
`=0

~G1;`L
` with ~G1;` =

K�1X
i=`+1

�i�i+j�K ;

~r2;t =
K�2X
j=1

~G2;j(L)�t�t�j where ~G2;j(L) =

K�j�2X
`=0

~G2;`L
` with ~G2;` =

K�j�1X
i=`+1

�i+j�i�K ;

~r+t =
1X
j=2

~G+j (L)�t�t�j where ~G+j (L) =
0X

`=2�(j^K)

~G+` L
` with ~G+` =

`�1X
i=1�(j^K)

�i�i+j�K ;

r1t =

K�1X
j=1

�j�j�K�
2
t�j ; r2t =

1X
jjj�K

1X
`=�1

�j�`�t�j�t�K�`; r3t =

K�1X
j=�K+1

�KX
`=�1

�j�`�t�j�t�K�`:

Lemma 1 implies that �t�t�K can be decomposed into the �rst term on the right-hand
side of (11) plus the remaining terms, the former of which is a martingale di¤erence array.
In order to establish the FCLT for the partial sum process of �t�t�K , we make the following
assumption on the divergence rate of K.

Assumption 3 The lag order K diverges to in�nity at a rate of T � for 1=4 � � < 1.

The divergence rate ofK is related with the establishment of Lemma 5(ii) in the appendix,
the proof of which implies that if, in general, f�ig is j-summable, then K could be T � for
1=(2j) � � < 1. Since f�ig is 2-summable in our case, we make Assumption 3. Note that
Assumptions 2 and 3 imply that M=K ! 0, which is required in the proofs of the lemmas
and theorems.

From expression (11), the FCLT for a sequence of martingale di¤erence arrays can be
applied to the �rst term on the right-hand side of (11) by the following Lemma 2 while the
di¤erencing operators � = 1 � L and �+ = 1 � L�1 avoid from accumulating the e¤ect
of ~rt and ~r+t . Intuitively, the partial sums of the remaining terms r1;t, r2;t and r3;t become
negligible because they include �j for j � K, which converges to zero su¢ ciently rapidly.

Lemma 2 Suppose that Assumptions 1 and 3 hold. Under the null hypothesis, the following
FCLT holds as T !1:

1p
T �K

[Tr]X
t=1

�t�t�K ) B(r); (12)
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where [a] is the largest integer less than a, 0 � r � 1, ) signi�es weak convergence of
the associated probability measures, and B(r) is a Brownian motion with the variance !2a �
�4� limK!1

P1
j=1G

2
j .

Note that (12) holds only when K ! 1 at a suitable rate; otherwise, the left-hand side
apparently goes to in�nity.

We are now in a position to apply Lemma 2 to the residuals in DOLS regression (7).
Since

�̂�t = �t � (�̂ � �)0Xt � (�̂��)0Vt + et;

where �̂ and �̂ are the estimators of � and � in (7) with � = [�M ; �M�1; � � � ; ��M ], Vt =
[v0t�M ; v

0
t�M+1; � � � ; v0t+M ]0, and et =

P
jjj>M �0jvt�j , we have

1p
T �K

TX
t=K+1

�̂�t �̂
�
t�K =

1p
T �K

TX
t=K+1

�t�t�K +
1p

T �K
(R�;T +R�;T +RT ) ; (13)

where

R�;T = (�̂��)0
TX

t=K+1

XtXt�K(�̂��)�(�̂��)0
TX

t=K+1

Xt�K�t�(�̂��)0
TX

t=K+1

Xt�t�K ; (14)

R�;T = (�̂��)0
TX

t=K+1

VtVt�K(�̂��)�(�̂��)0
TX

t=K+1

Vt�K�t�(�̂��)0
TX

t=K+1

Vt�t�K ; (15)

RT =
TX

t=K+1

etet�K +
TX

t=K+1

(�tet�K + �t�Ket) + (�̂ � �)0
TX

t=K+1

(XtVt�K +Xt�KVt)(�̂��)

�(�̂ � �)0
TX

t=K+1

(Xtet�K +Xt�Ket)� (�̂��)0
TX

t=K+1

(Vtet�K + Vt�Ket): (16)

The following theorem is obtained by applying Lemma 2 to the �rst term on the right-
hand side of (13) whereas the remaining terms are shown to be negligible by directly applying

the results of Saikkonen (1991), so that ĈK
d�! N(0; !2a) under the null hypothesis. The

consistency of !̂2a is also proved similarly to HML (2003). On the other hand, the test statistic
diverges to in�nity as proved by HML (2003) and then we omit the details.

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold. Under the null hypothesis, as T !
1,

ŜK ! N(0; 1);

whereas under the alternative, it diverges to in�nity.
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From Theorem 1, we can test for the null hypothesis of cointegration using the same test
statistic as HML (2003) using the DOLS regression residuals, even though they are not causal
but expressed as the leads and lags of the innovations.

3.3. Bias correction of the cointegration tests

As explained in the previous section, the cointegration test based on the autocovariance
su¤ers from under-size distortion and we need to construct the bias corrected version of the
test statistic as suggest by HLM (2005). Because the �rst term on the right-hand side of (13)
is the leading term, we de�ne the bias of (13) as the expectation of the remaining terms up
to Op(T�1=2). It is shown in the proof of Lemma 3 that the bias appears only from R�;T in
(13) while R�;T and RT can be negligible.

Lemma 3 The bias of (13), �b, is given by

�b = �
(pc + px)!

2
�p

T �K�2�
; where pc = 1 (constant case) or pc = 2 (trend case):

From the result of Lemma 3, the bias corrected version of the test statistic is de�ned by

~SK =
~CK +~b

!̂a
where ~b =

(pc + px)!̂
2
�p

T �K�̂2�

with !̂2� is the long-run variance estimator based on �̂
�
t with the Bartlett kernel de�ned as

(10) with ~aK;t replaced by �̂�t . Then, we have the following corollary:

Corollary 1 Suppose that Assumptions 1, 2 and 3 hold. Under the null hypothesis, as
T !1,

ŜK ! N(0; 1);

whereas under the alternative, it diverges to in�nity.

4. Panel Cointegration Test

In the case of panel cointegration, model (2) becomes

yi;t = �0iXi;t + ui;t for i = 1; 2; � � � ; N and t = 1; 2; � � � ; T; (17)

where Xi;t = [1; x0i;t]
0 (constant case) or Xit = [1; t; x0i;t]

0 (trend case), yi;t and xit are 1- and
pi;x- dimensional processes with

xi;t = xi;t�1 + vi;t and ui;t = �iui;t�1 + u
�
i;t:

Note that the speci�cation of the non-stochastic term and the dimension of the I(1) regressors
can be di¤erent for individuals.

Let u�a;t = [u�1;t; u
�
2;t; � � � ; u�N;t]0 and va;t = [v01;t; v

0
2;t; � � � ; v0N;t]0 are N - and pa;x � (p1;x +

p2;x + � � � + pN;x)-dimensional vectors, respectively. In the case of panel cointegration, we
make the following assumption:

11



Assumption 4 (a) [u�0a;t; v
0
a;t]

0 is a vector linear process given by�
u�a;t
va;t

�
=

1X
j=0

�a;j"a;t�j with
1X
j=0

j2k�a;jk <1;

where f�a;jg is a set of (N + pa;x)� pa coe¢ cients (pa is not necessarily equal to N + pa;x)
and f"a;tg is a pa-dimensional i:i:d: sequence with mean 0 and variance given by �a;", which
is positive de�nite, and has the �nite fourth order moments.
(b) The marginal distribution of [u�i;t; v

0
i;t] satis�es Assumption 1 for i = 1; 2; � � � ; N .

As in the univariate case, we do not allow for cointegration among regressors in each
individual regression (17) by Assumption 4(b). On the other hand, it is possible for some
xi;t to be cointegrated with xj;t with i 6= j. In this case, because xi;t and xj;t are driven by
common stochastic trends, the dimension of "a;t could be less than N + pa;x and hence �a;j
are not necessarily square matrices but the column dimension becomes smaller than the row
dimension. We also note that the cross-sectional dependence in ui;t is allowed through the
o¤-diagonal elements of �a;j and �a;" and that common factors can be included in uit as far
as they can be expressed as linear processes. Assumption 4(b) implies that [u�i;t; v

0
i;t]
0 can be

expressed as in Assumption 1 using a (pi;c + pi;x)-dimensional i:i:d: sequence f"i;tg and that
"i;s are independent of "j;t for s 6= t. The latter property will be used to establish the joint
convergence of the individual test statistics.

For example, when xit is one-dimensional and common for all i and the errors are linear
processes given by

�xi;t = vi;t =

1X
j=0

�vj"
v
t�j for all i and u�i;t =

1X
j=0

�ui;j"
u
i;t�j ;

where f"vt g is independent of f"ui;tg, we can see that2666666664

u�1;t
...

u�N;t
v1;t
...

vN;t

3777777775
=

1X
j=0

2666666664

�u1;j 0
. . .

�uN;j
�vj
...

0 �vj

3777777775

26664
"u1;t�j
...

"uN;t�j
"vt�j

37775 with �a;" =

26664
�11 � � � �1N
...

. . .
... 0

�N1 � � � �NN
0 �vv

37775 :

In this case, "a;t are (N + 1)-dimensional vectors and �a;j are 2N � (N + 1) matrices.

The null hypothesis in the panel case is that all the individuals are cointegrated whereas
at least one individual is not cointegrated under the alternative. That is,

H0 : �i < 1 for all i vs. H1 : �i = 1 for i = 1; � � � ; N1 with 1 � N1 � N:

Note that because the cross-sectional dimension N is �xed in our model, we can reject the
null hypothesis even if only one individual is not cointegrated. However, it is not di¢ cult to
expect that the test against small N1 is less powerful than that against large N1.
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As in the univariate case, individual regression (17) is augmented by the leads and lags
of the �rst di¤erences of the I(1) regressors and we obtain the DOLS regression given by

yi;t = �0iXi;t +
MX

j=�M
�0i;jvi;t�j + �

�
i;t (18)

where ��i;t is de�ned as before and the standardized regression residuals are de�ned as

~��i;t =
�̂�i;t
�̂i;�

where �̂2i;� =
1

T

TX
t=1

�̂�2i;t:

Note that the truncation point M can be di¤erent over cross-sections but we proceed with
the same M for notational convenience.

In this case, the test statistic for panel cointegration is given by

ŜK =
~CK
!̂a

where ~CK =
1p

T �K

TX
t=K+1

~aK;t with ~aK;t =

NX
i=1

~��i;t~�
�
i;t�K ;

while the bias corrected version of the test statistic is de�ned as

~SK =
~CK +~b

!̂a
where ~b =

1p
T �K

NX
i=1

(pi;c + pi;x)!̂
2
i;�

�̂2i;�
:

Theorem 2 Suppose that Assumptions 4, 2 and 3 hold. Under the null hypothesis, as T !
1,

ŜK ; ~SK ! N(0; 1);

whereas under the alternative, they diverge to in�nity.

As discussed in the introduction, the advantage of using HLM (2005) test is that we do
not have to rely on the joint limit theorem in order to obtain a test statistic whose null
limiting distribution is free of nuisance parameter. This is because the test statistic in the
univariate case has the limiting normal distribution. As a result, we can apply our test even
for panel data with small N .

5. Monte Carlo Simulations
5.1. Single cointegration tests

In this section, we �rst investigate the �nite sample performance of the single cointegration
tests proposed in this paper. The data generating process is given by

yt = �0ct + �xt + ut; xt = xt�1 + vt;

ut = �ut�1 + "
u
t ; vt =  vt�1 + "

v
t ;
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where ct = 1 in the constant case while ct = [1; t]0 in the trend case, � = 0, � = 1, and
["ut ; "

v
t ]
0 � i:i:d:N(0;�) with vech(�) = [1; 0:5; 1]0. The initial values of ut and vt are u0 =

v0 = 0. To control serial correlation in vt, we set  = 0, 0.4, 0.8. Under the null hypothesis
of cointegration, � must be less than 1 in absolute value and then we consider three cases;
� = 0, 0.4, 0.8, while the alternative of no cointegration corresponds to the case with � = 1.

Throughout the simulations, the bandwidth J for the long-run variance estimation and
the leads-lags truncation parameter M are set to

J =
h
12(T=100)1=4

i
and M =

h
2(T=100)1=5

i
:

We also investigate the e¤ect of the lag order K on our tests based on the autocovariance
because the �nite sample performance will crucially depend on K. We consider

K =
h
(aT )�

i
for a = 1, 2 and 3 and � = 1=4, 1=2 and 3=4;

so that 9 lag orders are used in the simulations. Note that HML (2003) and HLM (2005)
recommended K = O(T 1=2). The number of replications is 5,000 and the signi�cance level is
set to 0.05. All computations are conducted using the GAUSS matrix language.

For the purpose of comparison, we also calculate the single cointegration test statistic
proposed by Shin (1994), which is one of the most frequently used test in applications, and
the LBIU test by Kurozumi and Arai (2008), which can control the empirical size well even
when the errors are strongly serially correlated. The leads-lags truncation parameter for the
Shin�s test is the same as the above, while the semiparametric correction is used for the LBIU
test; see Kurozumi and Arai (2008) for details.

Table 1 reports the rejection frequencies of the tests. The Shin�s test can well control the
size of the test when the serial correlation is not strong but when � = 0:8, it su¤ers from
over-size distortion. On the other hand, the empirical size of the LBIU test is close to 0.05
even in the case of strong serial correlation. For the autocovariance based tests, the columns
Ŝk(a) and ~Sk(a) correspond to the case when K = [(aT )1=2] for a = 1, 2 and 3 are used; the
cases with the other lag orders are omitted to save space.7 From the table, we observe that
the tests with no bias correction, Ŝk(a), tend to be conservative because of the e¤ect of the
negative bias, whereas the empirical sizes of the bias corrected versions, ~Sk(a), are close to
the nominal one except for the case where a = 1 and � =  = 0:8. Overall, the �nite sample
performance of our test under the null hypothesis is better than that of the Shin�s test and
as good as the LBIU test.

With respect to power, the Shin�s test seems more powerful than the LBIU test by ob-
serving the results for  = 0 and 0:4, in which case the sizes of these two tests are close
to the nominal one. On the other hand, the bias corrected versions of the autocovariance
based test are more powerful than the LBIU test and relatively comparable to the Shin�s test.
Taking into account the �nite sample performance under both the null and the alternative
hypotheses, we recommend using our bias corrected test with K = [(2T )1=2].

7Roughly speaking, the autocovariance based tests with K = [(aT )1=4] and [(aT )3=4] result in the over-size
distortion when the errors are strongly serially correlated.
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5.2. Panel cointegration tests

We next investigate the �nite sample performance of the panel cointegration tests. The
data generating process is similar to the single equation case and it is given by

yit = �0ict + �ixit + ei;t; xi;t = xi;t + vi;t; ei;t = ui;t + �ift;

ui;t = �iui;t�1 + "
u
i;t; vi;t =  ivi;t�1 + "

v
i;t;

where �i = 0, �i = 1, and ["
u
i;t; "

v
i;t]
0 � i:i:d:N(0;�) with vech(�) = [1; 0:5; 1]0 with u0 = v0 =

0. The error terms ei;t consist of the idiosyncratic errors ui;t and the common components
�ift with common factor ft and loading factors �i. The idiosyncratic errors, ui;t, and the
driving force of the I(1) regressors, vi;t, are correlated for the same individual i, but they are
cross-sectionally independent. We set �i = 0 for the case of no cross-sectional correlation
while �i � U(0; 1) and ft � i:i:d:N(0; 1) for the case of cross-sectional dependence. To see
the e¤ect of serial correlation on the tests under the null hypothesis, we consider three cases;
�i � U(�0:4; 0:4) and  i � U(�0:4; 0:4) (mild serial correlation), �i � U(�0:8; 0:8) and
 i � U(�0:8; 0:8) (diversi�ed serial correlation), and �i � U(0:7; 0:9) and  i � U(0:7; 0:9)
(strong serial correlation). Under the alternative hypothesis that not all the individuals are
cointegrated, we generate �i = 1 for i = 1; � � � ; N1 and �i for i = N1+1; � � � ; N are the same
as in the null hypothesis.

Table 2 summarizes the results for the case of no cross-sectional dependence and mild serial
correlation. For the purpose of comparison, we also calculate the test statistic proposed by
McCoskey and Kao (1998) and report the rejection frequencies on the column denoted by
MK.8 From the rows of N1=N = 0 in the table, we can see that the MK test su¤ers from over-
size distortion in almost all the cases.9 As theoretically expected from the previous section,
our tests with no bias correction tends to under-reject the null hypothesis. In particular, the
empirical size is almost zero when N = 100. On the other hand, the bias corrected versions
work well, which indicates the e¤ectiveness of our bias correction, except for the case where
T = 100 and N � 50. Because of the size distortion there is no need to discuss the power
of the MK test and the statistics Ŝk(a). The powers of ~Sk(a) is generally good, it increases
with the sample size T and the ratio N1=N as expected.

Table 3 reports the case of diversi�ed serial correlation. In this case, the empirical size
of ~Sk(2) is close to the nominal one in many cases whereas ~Sk(3) tend to over-reject the
null hypothesis when T = 100, although its performance improves as T gets larger. On the
other hand, when the serial correlation is positively strong, the control of the empirical size
becomes more di¢ cult as in Table 4. However, we observe that the empirical size of ~Sk(2) is
still close to 0.05 in many cases even in the presence of strong serial correlation.

8We used the asymptotic mean and variance to construct the test statistic by McCoskey and Kao (1998).
Because they reported the mean and variance only in the constant case, we calculate those values in the trend
case by simulations.

9Our preliminary simulations show that the size of the MK test becomes closer to the nominal one when
all the errors are independent.
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The rejection frequencies in the case of the cross-sectional dependence are reported in
Tables 5-7. The relative performance is preserved but it seems that the sizes of ~Sk(a) become
better in this case.

All of the above results correspond to the case where xi;t is cross-sectionally independent.
However, in practical analysis, they may be correlated and moreover, it is possible for xit
to be cointegrated with xj;t. Then, we consider the same data generating process as before
except that

xi;t = 
i(xt + wi;t); xt = xt�1 + vt;

where vt =  vt�1+ "vt , wi;t � i:i:d:N(0; 1) and 
i � U(0:5; 1:5). That is, we consider the case
where xi;t are driven by the common stochastic trend, which implies that [x1;t; � � � ; xN;t]0 are
cointegrated with cointegrating rank N � 1.

Again, the overall property of ~Sk(a) is preserved but they su¤er from over-size distortion
when T = 100 and N is not small as in Tables 8�13. In summary, our bias corrected tests
with K = [(2T )1=2] or K = [(2T )1=3] are recommended in practical analysis on the basis of
our extensive simulations.

6. Conclusion

In this paper we have proposed tests assuming a null hypothesis of cointegration. Contrary
to the single equation cointegration tests in the literature where the limiting distributions are
non-standard, we show that our tests have a standard normal asymptotic distribution. Our
tests are transposed to panel data cointegration tests allowing for cross-section dependence
and serial correlation. We prove for N �xed and T ! 1 that the limiting distributions of
our statistics are standard normals. We have derived a bias correction which is shown to
work well in �nite sample via Monte Carlo simulations, particularly when T is larger than
N: Finally, our tests are robust to the likely presence of cointegration across units which is
often the case in macroeconomic data.

Appendix

In this appendix, �c signi�es a generic positive constant that may di¤er from place to place.

Proof of Lemma 1

Using expression (6), we decompose �t�t�K into 5 parts as follows:

�t�t�K =

1X
j=�1

�j�t�j

1X
`=�1

�`�t�K�`

=
K�1X
j=1

1X
`=0

gt(j; `) +
K�1X
j=1

�1X
`=1�K

gt(j; `) +
0X

j=1�K

1X
`=1�K

gt(j; `)

+

1X
jjj�K

1X
`=�1

gt(j; `) +

K�1X
j=1�K

�KX
`=�1

gt(j; `)
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� C1;t + C2;t + C3;t + r2;t + r3;t; say; (19)

where gt(j; `) = �j�`�t�j�t�K�`.

For C1;t, we can see that

C1;t =
K�1X
j=1

j�1X
`=0

gt(j; `) +
K�1X
j=1

1X
`=j

gt(j; `):

The �rst term becomes
K�1X
j=1

j�1X
`=0

gt(j; `) = [gt(K � 1; 0)] + [gt(K � 2; 0) + gt(K � 1; 1)]

+ � � �+ [gt(1; 0) + gt(2; 1) + � � �+ gt(K � 1;K � 2)]

=

K�1X
j=1

j�1X
`=0

gt(K � j + `; `)

=
K�1X
j=1

K�1X
`=K�j

gt(`; j + `�K)

=
K�1X
j=1

K�1X
`=K�j

�`�j+`�K�t�`�t�`�j ; (20)

where the third equality holds by re-de�ning ` as K � j + `. Similarly, we have
K�1X
j=1

1X
`=j

gt(j; `) =
1X
j=0

K�1X
`=1

gt(`; j + `)

=
1X
j=K

K�1X
`=1

gt(`; j + `�K)

=
1X
j=K

K�1X
`=1

�`�j+`�K�t�`�t�`�j ; (21)

where the second equality is obtained by re-de�ning j as j +K.

Similarly, we have

C2;t =

K�1X
j=1

�1X
`=1�K

gt(j; `)

=

K�1X
j=1

K�1X
`=1

�j�`�K�t�j�t�`

=
K�1X
j=1

�j�j�K�
2
t�j +

K�2X
j=1

K�1X
`=j+1

(�j�`�K + �`�j�K)�t�j�t�`
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= r1;t +
K�2X
j=1

K�j�1X
`=1

(�`�j+`�K + �j+`�`�K)�t�`�t�`�j : (22)

Then, we have, from (20)�(22),

C1;t + C2;t = r1;t +

1X
j=1

K�1X
`=1

�`�j+`�K�t�`�t�`�j +
K�2X
j=1

K�j�1X
`=1

�j+`�`�K�t�`�t�`�j : (23)

For C3;t,

C3;t =
0X

j=1�K

1X
`=1�K

gt(j; `)

=

0X
j=1�K

jX
`=1�K

gt(j; `) +

0X
j=1�K

1X
`=j+1

gt(j; `)

=

KX
j=1

jX
`=1

gt(�j + `; `�K) +
1X
j=1

KX
`=1

gt(`�K; j + `�K)

=
KX
j=1

0X
`=1�j

gt(`; j + `�K) +
1X
j=1

0X
`=1�K

gt(`; j + `)

=

KX
j=1

0X
`=1�j

gt(`; j + `�K) +
1X

j=K+1

0X
`=1�K

gt(`; j + `�K)

=
1X
j=1

0X
`=(1�j)_(1�K)

gt(`; j + `�K)

=
1X
j=1

0X
`=(1�j)_(1�K)

�`�j+`�K�t�`�t�`�j ; (24)

and then from (23) and (24), we have

C1;t + C2;t + C3;t

= r1;t +

1X
j=1

K�1X
`=(1�j)_(1�K)

�`�j+`�K�t�`�t�`�j +
K�2X
j=1

K�j�1X
`=1

�j+`�`�K�t�`�t�`�j

= r1;t + Ca;t + Cb;t; say: (25)

We next apply the B�N decomposition to Ca;t and Cb;t. For Ca;t, we consider three cases
where ` = 0, ` � 1 and ` � �1. For ` = 0, we have

Ca;t =
1X
j=1

�0�j�K�t�t�j ; (26)
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while for ` � 1,

Ca;t =

1X
j=1

K�1X
`=1

�`�j+`�KL
`�t�t�j

=
1X
j=1

K�1X
`=1

�`�j+`�K [1� (1� L`)]�t�t�j

=
1X
j=1

K�1X
`=1

�`�j+`�K�t�t�j ��
1X
j=1

K�1X
`=1

�`�j+`�K

`�1X
i=0

Li�t�t�j

=

1X
j=1

K�1X
`=1

�`�j+`�K�t�t�j ��
1X
j=1

K�2X
i=0

 
K�1X
`=i+1

�`�j+`�K

!
Li�t�t�j

=
1X
j=1

K�1X
`=1

�`�j+`�K�t�t�j ��~r1;t: (27)

For ` � �1, it is su¢ cient to consider the case where j � 2. For j = 2; � � � ;K � 1, the
summand of Ca;t becomes

�1X
`=1�j

�`�j+`�KL
`�t�t�j

=
�1X

`=1�j
�`�j+`�K [1� (1� L`)]�t�t�j

=

�1X
`=1�j

�`�j+`�K�t�t�j ��+
�1X

`=1�j
�`�j+`�K

0X
i=`+1

Li�t�t�j

=
�1X

`=1�j
�`�j+`�K�t�t�j ��+

0X
i=2�j

0@ i�1X
`=1�j

�`�j+`�K

1ALi�t�t�j ; (28)

where �+ = (1� L�1) and we used the relation (1� L`) = (1� L�1)(1 + L�1 + � � �+ L`+1)
for ` < 0, while for j � K, it can be expressed as

�1X
`=1�K

�`�j+`�KL
`�t�t�j

=

�1X
`=1�K

�`�j+`�K�t�t�j ��+
�1X

`=1�K
�`�j+`�K

0X
i=`+1

Li�t�t�j

=
�1X

`=1�K
�`�j+`�K�t�t�j ��+

0X
i=2�K

 
i�1X

`=1�K
�`�j+`�K

!
Li�t�t�j : (29)
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From (28) and (29), Ca;t for ` � �1 becomes

Ca;t =

1X
j=2

�1X
`=1�(j^K)

�`�j+`�K�t�t�j ��+
1X
j=2

0X
i=2�(j^K)

0@ i�1X
`=1�(j^K)

�`�j+`�K

1ALi�t�t�j

=

1X
j=2

�1X
`=1�(j^K)

�`�j+`�K�t�t�j ��+~r+t : (30)

Combining (26), (27) and (30), we can see that

Ca;t =
1X
j=1

K�1X
`=1�(j^K)

�`�j+`�K�t�t�j ��~r1;t ��+~r+t

=
1X
j=1

G1;j�t�t�j ��~r1;t ��+~r+t : (31)

In exactly the same way, we have

Cb;t =
K�2X
j=1

K�j�1X
`=1

�j+`�`�K�t�t�j ��
K�2X
j=1

K�j�1X
`=1

�j+`�`�K

`�1X
i=0

Li�t�t�j

=

K�2X
j=1

G2;j�t�t�j ��
K�2X
j=1

K�j�2X
i=0

 
K�j�1X
`=i+1

�j+`�`�K

!
Li�t�t�j

=
K�2X
j=1

G2;j�t�t�j ��~r2;t: (32)

Combining (19), (25), (31) and (32), we obtain (11).�

Proof of Lemma 2

From (11) in Lemma 1, we can see that

1p
T

[Tr]X
t=1

�t�t�K =
1p
T

[Tr]X
t=1

1X
j=1

Gj�t�t�j +
1p
T

�
~r0 � ~r[Tr] � r+1 + r

+
[Tr]

�

+
1p
T

[Tr]X
t=1

(r1;t + r2;t + r3;t): (33)

We will show that the FCLT holds for the �rst term on the right-hand side while the other
terms are negligible, using the following lemma:
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Lemma 4 For f�jg1j=�1 satisfying the condition given by (6), (i)
1X

jjj�K
j�j j = o

�
1

K2

�
and

1X
jjj�K

j�j j2 = o

�
1

K4

�
, (ii)

1X
j=1

jGj j <1, (iii)
1X
j=1

K�2X
`=0

j ~G1;`j <1, (iv)
K�2X
j=1

K�j�2X
`=0

j ~G2;`j <1,

(v)
1X
j=2

0X
`=2�(j^K)

j ~G+` j <1. The relations (ii)�(v) hold uniformly over K.

Proof of Lemma 4: (i) is shown by
1X

jjj�K
j�j j � 1

K2

1X
jjj�K

jjj2j�j j = o

�
1

K2

�
;

1X
jjj�K

j�j j2 � 1

K4

1X
jjj�K

jjj4j�j j2 = o

�
1

K4

�
:

For (ii)-(v), we have

1X
j=1

jGj j �
1X
j=1

jG1;j j+
K�2X
j=1

jG2j j

�
1X
j=1

K�1X
`=1�(j^K)

j�`jj�j+`�K j+
K�2X
j=1

K�j�1X
`=1

j�j+`jj�`�K j

�
K�1X
`=1�K

j�`j
1X
j=1

j�j+`�K j+
K�2X
`=1

j�`�K j
K�2X
j=1

j�j+`j

�
 1X
`=�1

j�`j
!2
+

1X
`=�1

j�`j
1X
j=1

j�j j <1:

1X
j=1

K�2X
`=0

j ~G1;`j �
1X
j=1

K�2X
`=0

K�1X
i=`+1

j�ijj�i+j�K j

�
K�2X
`=0

K�1X
i=`+1

j�ij
1X

j=�1
j�j j

=

K�1X
i=1

ij�ij
1X

j=�1
j�j j <1:

K�2X
j=1

K�j�2X
`=0

j ~G2;`j �
K�2X
j=1

K�j�2X
`=0

K�j�1X
i=`+1

j�i+j jj�i�K j
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=
K�2X
j=1

K�j�1X
i=1

ij�i+j jj�i�K j

�
K�2X
i=1

j�i�K j
K�2X
j=1

(i+ j)j�i+j j

�
1X

i=�1
j�ij

1X
j=1

jj�j j <1:

1X
j=2

0X
`=2�(j^K)

j ~G+` j �
1X
j=2

0X
`=2�(j^K)

`�1X
i=1�(j^K)

j�ijj�i+j�K j

�
0X

`=2�K

`�1X
i=1�K

j�ij
1X
j=2

j�i+j�K j

�
�1X

i=1�K
jijj�ij

1X
j=�1

j�j j <1:�

Note that the absolute summability in Lemma 4(ii)�(v) implies the square summability
of the corresponding terms. Using Lemma 4, we show that all the term on the right hand
side of (33), except for the �rst term, are negligible.

Lemma 5 For ~rt, ~r+t , r1;t, r2;t and r3;t in (33), (i) sup
0�r�1

���� 1pT ~r[Tr]
���� = op(1) and sup

0�r�1

���� 1pT ~r+[Tr]
���� =

op(1). (ii) sup
0�r�1

������ 1pT
[Tr]X
t=1

ri;t

������ = op(1) for i = 1; 2 and 3.

Proof of Lemma 5: (i) We �rst note that ~rt = ~r1;t + ~r2;t as de�ned in Lemma 1. Since

P

�
sup
0�r�1

���� 1pT ~ri;t
���� � "

�
� TP

�
1p
T
j~ri;tj � "

�
� 1

"4T
E[~r4i;t]

for i = 1 and 2, it is su¢ cient to prove that E[~r4i;t] <1 for i = 1 and 2. Noting that non-zero
terms of E[~r4i;t] are related to the products among E[�

2
t ], E[�

3
t ] and E[�

4
t ], all of which are

bounded by assumption, we can see that

E[~r41;t] � �c

0@ 1X
j=1

K�2X
`=0

j ~G1;`j

1A4 <1;
E[~r42;t] � �c

0@K�2X
j=1

K�j�2X
`=0

j ~G2;`j

1A4 <1
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uniformly over K by Lemma 4(iii) and (iv). The second statement of (i) for ~r+t is proved in
exactly the same manner.

(ii) For i = 1, we �rst show that E[r1;t] = o(1=K2). From the de�nition of r1;t, we have

E[jr1;tj] � �2�

1X
j=�1

j�j jj�j�K j: (34)

Noting that

1X
K=�1

jKj2
1X

j=�1
j�j jj�j�K j � 2

1X
K=�1

1X
j=�1

(jj �Kj2 + jjj2)j�j jj�j�K j

� 4
1X

K=�1
j�K j

1X
j=�1

jjj2j�j j <1

because of the 2-summability of f�jg, we can see that jKj2
P1
j=�1 j�j jj�j�K j is a convergence

sequence over K. In other words, K2
P1
j=�1 j�j jj�j�K j is o(1) as K ! 1 and then from

(34), E[jr1;tj] = o(1=K2) uniformly over t.

Using this result, since

sup
0�r�1

������ 1pT
[Tr]X
t=1

r1;t

������ � 1p
T

TX
t=1

jr1;tj ;

we obtain

E

24 sup
0�r�1

������ 1pT
[Tr]X
t=1

r1;t

������
35 � 1p

T

TX
t=1

E [jr1;tj] = o

 p
T

K2

!
= o(1):

For i = 2, by Cauchy-Schwarz inequality, we have

E[jr2;tj] �

8<:E
240@ 1X

jjj�K
�j�t�j

1A235E
24 1X

`=�1
�`�t�K�`

!2359=;
1=2

=

8<:�4�
1X

jjj�K
�2j

1X
`=�1

�2`

9=;
1=2

= o

�
1

K2

�
by Lemma 4(i). Then, we have E[supr jT�1=2

P[Tr]
t=1 r2;tj] = o(1) in exactly the same manner

as the proof for i = 1.

The case with i = 3 is shown similarly and we omit the proof.�
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From Lemma 5, the rest we have to show is that the FCLT holds for the �rst term on the
right-hand side of (33). From Theorem 27.14 of Davidson (1994), it is su¢ cient to show that

TX
t=1

m2
t

TX
t=1

E[m2
t ]

p�! 1; (35)

max
1�t�T

jmtj

(
TX
t=1

E[m2
t ])

1=2

p�! 0; (36)

lim
T!1

[Tr]X
t=1

E[m2
t ]

TX
t=1

E[m2
t ]

! r 8 0 � r � 1; (37)

where mt =
P1
j=1Gj�t�t�j .

The condition (35) holds if we show that T�1
PT
t=1(m

2
t �E[m2

t ]))
p�! 0, which is proved

using Chebyshev inequality by showing that

E

24( 1
T

TX
t=1

(m2
t � E[m2

t ])

)235 =
1

T 2

TX
t=1

E
�
(m2

t � E[m2
t ])

2
�

+
2

T 2

T�1X
s=1

TX
t=s+1

E
�
(m2

t � E[m2
t ])(m

2
t�s � E[m2

t�s])
�

! 0: (38)

For the �rst term on the right-hand side of (38),

1

T 2

TX
t=1

E
h�
m2
t � E[m2

t ]
�2i

=
1

T 2

TX
t=1

E

248<:
1X
i=1

1X
j=1

GiGj
�
�2t �t�i�t�j � �2�E[�t�i�t�j ]

�9=;
235

� �c

T

0@ 1X
j=1

jGj j

1A4 ! 0: (39)

24



For the second term, note that for s > 0,

E[(m2
t � E[m2

t ])(m
2
t�s � E[m2

t�s])]

=

1X
i1=1

1X
j1=1

1X
i2=1

1X
j2=1

Gi1Gi2Gi3Gi4E
�
(�2t �t�i1�t�j1 � �

2
�E[�t�i1�t�j1 ])

(�2t�s�t�s�i2�t�s�j2 � �
2
�E[�t�s�i2�t�s�j2]])

i
:

The expectation becomes

E
h
(�2t �t�i1�t�j1 � �

2
�E[�t�i1�t�j1 ])(�

2
t�s�t�s�i2�t�s�j2 � �

2
�E[�t�s�i2�t�s�j2]])

i
= E

�
�2�(�t�i1�t�j1 � E[�t�i1�t�j1 ])(�

2
t�s � �2�)�t�s�i2�t�s�j2

�
+E

h
�2�(�t�i1�t�j1 � E[�t�i1�t�j1 ])�

2
�(�t�s�i2�t�s�j2 � E[�t�s�i2�t�s�j2]])

i
:

Since f�tg is an independent sequence, the �rst expectation takes non-zero values when i)
i1 = j1 = s and i2 = j2, ii) i1 = s+ i2 and j1 = s+ j2, (iii) i1 = s+ j2 and j1 = s+ j2, while
for the second expectation, it is su¢ cient to consider either iv) i1 = s+ i2 and j1 = s+ j2 or
(v) i1 = s+ j2 and j1 = s+ j2. Therefore, we can see that

��E[(m2
t � E[m2

t ])(m
2
t�s � E[m2

t�s])]
�� � �c

24G2s 1X
j2=1

G2j2 +

 1X
i2=1

jGs+i2 jjGi2 j
!235 ;

and thus,����� 1T 2
T�1X
s=1

TX
t=s+1

E
�
(m2

t � E[m2
t ])(m

2
t�s � E[mt�s])

2
������ (40)

� �c

T

24T�1X
s=1

G2s

1X
j2=1

G2j2 +
T�1X
s=1

 1X
i2=1

jGs+i2 jjGi2 j
!235 � �c

T

240@ 1X
j2=1

G2j2

1A2 + 1X
i2=1

jGi2 j
!435! 0:

Then, (38) holds from (39) and (40).

To prove (36), we note that E[m2
t ] = �4�

P1
j=1G

2
j <1 and then the denominator of (36)

is O(
p
T ). On the other hand,

P

�
max
1�t�T

1p
T
jmtj � "

�
� T P

�
1p
T
jmtj � "

�
� 1

"4T
E[m4

t ] = O

�
1

T

�
;

because E[m4
t ] is bounded uniformly in t, T and M . Therefore, we obtain (36).

Finally, we can see that (37) holds even in �nite samples because of stationarity of mt.�
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Proof of Lemma 3

Let ~DT = diagf
p
T ; T Ipxg (constant case) or ~DT = f

p
T ; T

p
T ; Ipxg (trend case), kBk =

[tr(B0B)]1=2 and kBk1 = supfkBxk : kxk � 1g for a matrix B. We will show that only R�;T
yields the non-zero bias whereas R�;T and RT are negligible, using the following lemma:

Lemma 6 Suppose that Assumptions 1, 2 and 3 hold. Under the null hypothesis, as T !1,
(i) ~D�1

T (�̂ � �)
d�!
�R 1
0
~B(r) ~B0(r)dr

��1 R 1
0
~B(r)dB�(r), (ii) k�̂ � �k2 = Op(M=T ), (iii)

~D�1PT
t=K+1Xt�K�t

d�!
R 1
0
~B(r)dB�(r) and ~D�1PT

t=K+1Xt�t�K
d�!
R 1
0
~B(r)dB�(r), (iv)

kT�1=2
PT
t=K+1 Vt�K�tk = kT�1=2

PT
t=K+1 Vt�t�Kk = Op(M

1=2), (v) k
PT
t=K+1 �tet�Kk =

k
PT
t=K+1 �t�Ketk = op(1), (vi) ~D�1PT

t=K+1XtX
0
t�K

~D�1 d�!
R 1
0
~B(r) ~B0(r)dr,

(vii) k ~D�1
T

PT
t=K+1XtV

0
t�Kk = k ~DT

PT
t=K+1Xt�KV

0
t k = Op(M

1=2),
(viii) k ~DT

PT
t=K+1Xtet�Kk = k ~DT

PT
t=K+1Xt�Ketk = op(1), (ix) kT�1=2

PT
t=K+1 VtV

0
t�Kk =

Op(M), (x) k
�
T�1

PT
t=K+1 VtV

0
t

��1
� ��1x k1 = Op(M=

p
T ), (xi) k

PT
t=K+1 Vtet�Kk =

k
PT
t=K+1 Vt�Ketk = op(M

1=2), (xii) k
PT
t=K+1 etet�Kk = op(1), where ~B(r) = [1; B0(r)]0

(constant case) or ~B(r) = [1; r; B0(r)]0 (trend case) with B(r) being a px-dimensional Brown-
ian motion with the variance given by limT!1E[T�1=2xT ], B�(r) is a one-dimensional
Brownian motion independent of B(r) with the variance given by !2� = limT!1E[(T�1=2

PT
t=1 �t)

2]
and �x = E[VtV

0
t ].

Proof of Lemma 6: All the results, except for (v), (ix) and (xi), are obtained by Saikkonen
(1991) using the FCLT with K going to in�nity slower than T . For (v), we can see that�����

TX
t=K+1

�tet�K

����� � sup
1�t�T

jetj
TX
t=1

j�tj:

Note that
PT
t=1 j�tj = Op(T ) while

P

 
sup
1�t�T

jetj � "

!
� TP (jetj � ")

� T

"4
E[e4t ]

� �cT

"4

0@X
jjj�K

k�jk

1A4

=
�cT

"4
o

�
1

T 2

�
= o

�
1

T

�
; (41)

where the second last equality is obtained by (9).We thus obtain (v).
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For (ix), each block element is expressed as T�1=2
PT
t=K+1 vt�iv

0
t�K�j for i; j = �M; � � � ;M .

Since (t� i)� (t�K� j) = K� i+ j � K�2M , we can see that the time di¤erence diverges
to in�nity at a rate of K becauseM=K ! 0 by Assumptions 2 and 3. Because the conditions
for the FCLT given by HML (2003) are satis�ed, we can see that each element is Op(1), which
implies (ix).

(xi) is proved by noting that

E

"





TX

t=K+1

Vtet�K







#
� sup jetj

TX
t=1

E[kVtk] = op(
p
M);

because supt jetj = op(1=T ) by (41).�
We �rst evaluate R�;T . Using Lemma 6(i), (iii) and (vi), we have

R�;T
d�! �

�Z 1

0

~B(r)dB�(r)

�0�Z 1

0

~B(r) ~B0(r)dr

��1�Z 1

0

~B(r)dB�(r)

�
: (42)

Since
R 1
0
~B(r)dB�(r)j ~B(�) � N

�
0; !2�

R 1
0
~B(r) ~B0(r)dr

�
, we can see that the right-hand side

of (42) is distributionally equal to �!2� times a chi-square distribution with (pc+ px) degrees
of freedom. As a result, E[R�;T ] can be approximated by �!2�(pc + px).

For R�;T , the �rst term becomes




(�̂��)0
TX

t=K+1

VtVt�K(�̂��)





 �




�̂��


2 





TX

t=K+1

VtVt�K







= Op

�
M2

p
T

�
= op(1);

using Lemma 6 (ii) and (ix) and Assumption 2.

For the second term of R�;T , since it can be shown that





pT (�̂��)�
 
1

T

TX
t=1

VtV
0
t

!�1 
1p
T

TX
t=1

Vt�t

!





 � Op

 r
M

T

!
;

while






 
1p
T

TX
t=1

�tV
0
t

!24 1
T

TX
t=1

VtV
0
t

!�1
� ��1x

35 1p
T

TX
t=1

Vt�K�t

!





 = Op

�
M2

p
T

�
= op(1)

by Lemma 6 (iv) and (x), it is su¢ cient to evaluate�����E
" 

1p
T

TX
t=1

�tV
0
t

!
��1x

 
1p
T

TX
t=1

Vt�K�t

!#�����
� sup j��1x (i; j)j

1

T

TX
t=1

t�1X
`=t�T

��E �V 0t Vt�K�`�t�t�`��� : (43)
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To evaluate the right-hand side of (43), we express �t using "t such that

�t =
1X

j=�1
 0j"t�j ; where

1X
j=�1

jjj2k jk � 1

with f jg1j=�1 is a sequence of px + 1-dimensional coe¢ cient vectors, because

�t = ut �
1X

j=�1
�0jvt�j with ut =

1X
j=0

�1;j"t�j and vt =
1X
j=0

�2;j"t�j ;

where �j is partitioned into �j = [�01;j ;�
0
2;j ]

0. Then, by focusing on the term v0tvt�K�` in
V 0t Vt�K�`, we can see that

~R�;` � E
�
v0tvt�K�`�t�t�`

�
= E

240@ 1X
j1=0

�2;j1"t�j1

1A00@ 1X
j2=0

�2;j2"t�K�`�j2

1A 1X
i1=�1

 0i1"t�i1

! 1X
i2=�1

 0i2"t�`�i2

!35 :
We note that the expectation takes non-zero values when (i) j1 = K + `+ j2, i1 = `+ i2 and
i2 6= K + j2, (ii) i1 = j1, i2 = K + j2 and j1 6= K + `+ j2, (iii) i1 = K + `+ j2, i2 = j1 � `
and j1 6= K + `+ j2 , and (iv) i1 = K + `+ j2, i2 = K + j2 and j1 = K + `+ j2.

In case (i), for ` � 0, the sum of ~R�;` becomes�����
1X
`=0

~R�;`

����� � �c

1X
`=0

1X
j2=0

k�2;K+`+j2kk�j2k
1X

i2=�1
k `+i2kk i2k

� �c
1X
`=0

1X
j2=0

k�2;K+`+j2k

0@ 1X
j=0

k�2;jk

1A 1X
i2=�1

k i2k
!2

� �c

1X
j2=K

(j2 �K + 1)k�2;j2k = o

�
1

K

�
; (44)

because f�jg is 2-summable.
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On the other hand, for ` = �1;�2; � � � ;�K, we have�����
�1X

`=�K

~R�;`

����� � �c

[�K=2]X
`=�K

1X
j2=0

k�2;K+`+j2kk�j2k
1X

i2=�1
k `+i2kk i2k

+�c
�1X

`=[�K=2]+1

1X
j2=0

k�2;K+`+j2kk�j2k
1X

i2=�1
k `+i2kk i2k

� �c

0@ 1X
j2=0

k�j2k

1A2 [�K=2]X
`=�K

1X
i2=�1

k `+i2kk i2k

+�c

0@ �1X
`=[�K=2]+1

1X
j2=0

k�2;K+`+j2k

1A0@ 1X
j2=0

k�j2k

1A 1X
i2=�1

k i2k
!2

= o

�
1

K

�
+ o

�
1

K

�
; (45)

where the last relation holds because
1X

K=�1
jKj2

1X
i2=�1

k i2�Kkk i2k � 2
1X

K=�1

1X
i2=�1

(ji2j2 + ji2 �Kj2)k i2�Kkk i2k

� 4
1X

K=�1
k Kk

1X
i2=�1

ji2j2k i2k <1;

which implies jKj2
P1
i2=�1 k i2�Kkk i2k = o(1) or, equivalently,

P1
i2=�1 k i2�Kkk i2k =

o(1=K2), while

�1X
`=[�K=2]+1

1X
j2=0

k�2;K+`+j2k �
�
K

2

� 1X
j2=[K=2]

k�2;j2k = o

�
1

K

�
because of 2-summability of f�2;jg.

For ` � �K � 1,�����
�K+1X
`=�1

~R�;`

����� � �c

�K�1X
`=�1

1X
j1=0

k�2;j1kk�j1�K�`k
1X

i2=�1
k `+i2kk i2k

� �c

�K�1X
`=�1

1X
j1=0

k�j1�K�`k

0@ 1X
j1=0

k�2;j1k

1A 1X
i2=�1

k i2k
!2

� �c

1X
j1=K

j1k�j1k = o

�
1

K

�
: (46)

From (44)�(46), we have
���P1

`=�1
~R�;`

��� = o(1=K) in case (i).
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In case (ii), we �rst note that

E[vs�t] =
1X
j=0

�2;j�" j+` = 0 8` = 0;�1;�2; � � � : (47)

Then, we have for ` � 0,�����
1X
`=0

~R�;`

����� =

������
1X
`=0

1X
j2=0

1X
j1=0j1 6=K+`+j2

 0j1�"�
0
2;j1�2;j2�" K+j2

������
=

������
1X
`=0

1X
j2=0

 0K+`+j2�"�
0
2;K+`+j2�2;j2�" K+j2

������
� �c

1X
`=0

1X
j2=0

k K+`+j2kk�2;K+`+j2kk�2;j2k K+j2k

� �c

0@ 1X
j2=0

j2k K+j2k

1A0@ 1X
j2=0

j2k�2;K+j2k

1A0@ 1X
j2=0

k�2;j2k

1A0@ 1X
j2=0

k K+j2k

1A
= o

�
1

K2

�
;

where the second equality holds using (47).

Similarly for ` = �1; � � � ;�K,�����
�1X

`=�K
R�;t

����� � �c
�1X

`=�K

1X
j2=0

k K+`+j2kk�2;K+`+j2kk�2;j2k K+j2k

� �c

0@ �1X
`=�K

1X
j2=0

k�2;K+`+j2k

1A0@ 1X
j2=�1

k j2k

1A0@ 1X
j2=0

k�2;j2k

1A0@ 1X
j2=0

k K+j2k

1A
� �c

0@K�1X
j2=0

(j2 + 1)k�2;j2k+K
1X

j2=K

k�2;j2k

1A0@ 1X
j2=0

k K+j2k

1A = o

�
1

K

�
;

while for ` � �K � 1,�����
�K�1X
`=�1

R�;t

����� =

������
�K�1X
`=�1

1X
j2=0

1X
j1=0j2 6=j1�K�`

 0j1�"�
0
2;j1�2;j2�" K+j2

������
=

������
�K�1X
`=�1

1X
j1=0

 0j1�"�
0
2;j1�2;j1�K�`�" j1�`

������
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� �c

0@ 1X
j1=0

k j1k

1A0@ 1X
j1=0

k�2;j1k

1A0@ 1X
j1=0

j1k�2;j1k

1A0@ 1X
j1=K+1

(j1 �K)k j1k

1A
= o

�
1

K

�
:

We then have
���P1

`=�1
~R�;`

��� = o(1=K) in case (ii).

In exactly the same way, we have the same order in cases (iii) and (iv), so that
���P1

`=�1
~R�;`

��� =
o(1=K) in general. Then, we can see that the right-hand side of (43) is o(M=K) = o(1) by
Assumptions 2 and 3, so that the second term of R�;T is op(1). Similarly, we can show that
the third term of R�;T is op(1).

Using Lemma 6, it is not di¢ cult to see that RT = op(1). As a result, we obtain the
bias.�

Proof of Theorem 2

As given by Lemma 1, we can apply the B�N decomposition to each �i;t�i;t�K . We can
also see from Theorem 1 that �i;t�i;t�K is the dominate term in �̂

�
i;t�̂

�
i;t�Kwhile the other terms

are negligible and the bias becomes as given in Lemma 3 for each i. The rest we have to
show is that the FCLT holds for

PN
i=1 �i;t�i;t�K . Note that because �i;t is obtained by linear

transformations of "i;t, �i;t is independent of �j;s for all i; j and s 6= t. Thus, we can see thatPN
i=1 �i;t�i;t�K is a martingale di¤erence sequence with respect to the sigma-�eld constructed

from �1;t; �2;t�1; � � � ; �2;t; �2;t�1; � � � ; �N;t; �N;t�1; � � � . Because Gi;j for i = 1; � � � ; N satisfy
Lemma 4(ii), we can see that the conditions of the FCLT given by Theorem 27.14 of Davidson
(1994) are satis�ed as in the proof of Theorem 1. We then have the theorem.�
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